首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
BackgroundUnderstanding of the molecular mechanisms of miRNAs involved in osteoblast differentiation is important for the treatment of bone-related diseases.MethodsMC3T3-E1 cells were induced to osteogenic differentiation by culturing with bone morphogenetic protein 2 (BMP2). After transfected with miR-26b-3p mimics or inhibitors, the osteogenic differentiation of MC3T3-E1 cells was detected by ALP and ARS staining. Cell viability was analyzed by MTT. The expressions of miR-26b-3p and osteogenic related markers and signaling were examined by qPCR and western blot. Direct binding of miR-26b-3p and ER-α were determined by dual luciferase assay.ResultsmiR-26b-3p was significantly down-regulated during osteoblast differentiation. Overexpression of miR-26b-3p inhibited osteoblast differentiation, while inhibition of miR-26b-3p enhanced osteoblast differentiation. Further studies demonstrated miR-26b-3p inhibited the expression of estrogen receptor α (ER-α) by directly targeting to the CDS region of ER-α mRNA. Overexpression of ER-α rescued the suppression effects of miR-26b-3p on osteoblast differentiation, while knockdown of ER-α reversed the upregulation of osteoblast differentiation induced by knockdown of miR-26b-3p.ConclusionOur study demonstrates that miR-26b-3p suppresses osteoblast differentiation of MC3T3-E1 cells via directly targeting ER-α.  相似文献   

5.
6.
Kim SN  Bae SJ  Kwak HB  Min YK  Jung SH  Kim CH  Kim SH 《Amino acids》2012,42(4):1455-1465
We investigated the in vitro and in vivo osteogenic activity of licochalcone A. At low concentrations, licochalcone A stimulated the differentiation of mouse pre-osteoblastic MC3T3-E1 subclone 4 (MC4) cells and enhanced the bone morphogenetic protein (BMP)-2-induced stimulation of mouse bi-potential mesenchymal precursor C2C12 cells to commit to the osteoblast differentiation pathway. This osteogenic activity of licochalcone A was accompanied by the activation of extracellular-signal regulated kinase (ERK). The involvement of ERK was confirmed in a pharmacologic inhibition study. Additionally, noggin (a BMP antagonist) inhibited the osteogenic activity of licochalcone A in C2C12 cells. Licochalcone A also enhanced the BMP-2-stimulated expression of various BMP mRNAs. This suggested that the osteogenic action of licochalcone A in C2C12 cells could be dependent on BMP signaling and/or expression. We then tested the in vivo osteogenic activity of licochalcone A in two independent animal models. Licochalcone A accelerated the rate of skeletal development in zebrafish and enhanced woven bone formation over the periosteum of mouse calvarial bones. In summary, licochalcone A induced osteoblast differentiation with ERK activation in both MC4 and C2C12 cells and it exhibited in vivo osteogenic activity in zebrafish skeletal development and mouse calvarial bone formation. The dual action of licochalcone A in stimulating bone formation and inhibiting bone resorption, as described in a previous study, might be beneficial in treating bone-related disorders.  相似文献   

7.
8.
9.
10.
BMP2/7异源二聚体调控CIZ的表达与自身活性的关系   总被引:1,自引:0,他引:1  
BMP2/7异源二聚体的活性显著高于BMP2同源二聚体,但其机制并不清楚。采用哺乳动物细胞表达的BMP2/7异源二聚体处理成骨细胞MC3T3-E1,细胞化学染色发现BMP2/7的活性显著高于BMP2,报告载体p3GC2-LUX检测发现BMP2/7能够明显上调BMP/Smad通路的活性(P<0.05)。但在成骨细胞中过表CIZ(Casinteracting zinc finger protein),能够显著抑制BMP2/7上调ALP与Osteocalcin的作用,并阻断BMP2/7对BMP/Smad通路的激活。同时发现BMP蛋白能够上调CIZ的表达,但BMP2/7的作用明显低于BMP2同源二聚体。可以认为BMP2/7能够诱导CIZ的表达,但由于作用较弱,所以对自身活性的反馈抑制作用也较弱,这可能是BMP2/7有着较强生物活性的关键所在。  相似文献   

11.
Tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK), a member of the TNF family, is a multifunctional cytokine that regulates cell growth, migration, and survival principally through a TWEAK receptor, fibroblast growth factor-inducible 14 (Fn14). However, its physiological roles in bone are largely unknown. We herein report various effects of TWEAK on mouse osteoblastic MC3T3-E1 cells. MC3T3-E1 cells expressed Fn14 and produced RANTES (regulated upon activation, healthy T cell expressed and secreted) upon TWEAK stimulation through PI3K-Akt, but not nuclear factor-kappaB (NF-kappaB), pathway. In addition, TWEAK inhibited bone morphogenetic protein (BMP)-2-induced expression of osteoblast differentiation markers such as alkaline phosphatase through mitogen-activated protein kinase (MAPK) Erk pathway. Furthermore, TWEAK upregulated RANKL (receptor activation of NF-kappaB ligand) expression through MAPK Erk pathway in MC3T3-E1 cells. All these effects of TWEAK on MC3T3-E1 cells were abolished by mouse Fn14-Fc chimera. We also found significant TWEAK mRNA or protein expression in osteoblast- and osteoclast-lineage cell lines or the mouse bone tissue, respectively. Finally, we showed that human osteoblasts expressed Fn14 and induced RANTES and RANKL upon TWEAK stimulation. Collectively, TWEAK/Fn14 interaction regulates RANTES production, BMP-2-induced differentiation, and RANKL expression in MC3T3-E1 cells. TWEAK may thus be a novel cytokine that regulates several aspects of osteoblast function.  相似文献   

12.
13.
14.
To effectively treat serious bone defects using bone regenerative medicine, there is a need for the development of a small chemical compound that potently induces bone formation. We now report a novel osteogenic helioxanthin-derivative, TH. TH induced osteogenic differentiation in MC3T3-E1 cells, mouse primary osteoblasts, and mouse embryonic stem cells. The combination of TH and bone morphogenetic protein (BMP) 2 induced the mRNA expression of osteoblast marker genes and calcification in primary fibroblasts. The TH induced the mRNA of the inhibitor of DNA-binding 1 (Id-1), and its osteogenic effect was inhibited by Smad6 or Noggin. Furthermore, TH induced the mRNA expression of Bmp4 and Bmp6. These data suggest that TH exerts its potent osteogenic effect in a BMP-dependent manner by enhancing the effects of the existing BMPs and/or increasing the expression of Bmp4 and Bmp6. TH may help establish a more efficient bone regeneration system.  相似文献   

15.
The effects of Ce on the proliferation, osteogenic differentiation and mineralization function of a murine preosteoblast cell line MC3T3-E1 in vitro were investigated at cell and molecular levels. The results showed that Ce promoted the proliferation, osteogenic differentiation and mineralization function of MC3T3-E1 cells at concentrations of 0.0001, 0.001, 0.01, 0.1 and 1???M, but turned to inhibit the proliferation, osteogenic differentiation and mineralization function at concentrations of 10, 100 and 1000???M. Ce displayed the up-regulation of Runx2, BMP2, ALP, BSP, Col I and OCN genes at concentrations of 0.0001 and 0.1???M; these genes were down-regulated in the MC3T3-E1 cells treated with 1000???M Ce. The expression of BMP2, Runx2 and OCN proteins was promoted by Ce at concentrations of 0.0001 and 0.1???M, but these proteins were down-regulated after 1000???M Ce treatment. The results suggest that Ce likely up-regulates or down-regulates the expression of Runx2, which subsequently up- or down-regulates OB marker genes Col I and BMP2 at early stages and ALP and OCN at later stages of differentiation, thus causing to promote or inhibit the proliferation, osteogenic differentiation and mineralization function of MC3T3-E1 cells.  相似文献   

16.
17.
CCAAT/enhancer binding protein beta (C/EBPbeta) is known to play an important role in the expression of several genes necessary for bone development and homeostasis including osteocalcin, IGF-1, and IL-6. In this study, we show that C/EBPbeta protein levels and, consequently, DNA-binding activity are temporally regulated, dramatically decreasing upon differentiation of MC3T3-E1 mouse osteoblasts. Corresponding with these results, the constitutive expression of C/EBPbeta LAP in MC3T3-E1 osteoblasts increased proliferation and suppressed osteogenic differentiation. Thus, C/EBPbeta LAP not only appears to participate in the regulation of genes associated with mature bone physiology, but is also a critical regulator of osteoblast growth and differentiation.  相似文献   

18.
19.
Bone morphogenetic protein-2 (BMP-2) is an important regulator of osteoblast differentiation. However, the regulation of osteoblast apoptosis by BMP signaling remains poorly understood. Here we examined the role of type I BMP receptor (BMP-RI) in osteoblast apoptosis promoted by BMP-2. Despite undetectable BMP-RIB expression in OHS4 cells, BMP-2 or BMP-2 overexpression increased osteoblast differentiation similarly as in SaOS2 cells which express BMP-RIB, as shown by alkaline phosphatase and CBFA1/RUNX2 expression. In contrast to SaOS2 cells, however, BMP-2 or BMP-2 overexpression did not increase caspase-9 and caspases-3, -6, and -7 activity and DNA fragmentation in OHS4 cells. Consistently, BMP-2 increased protein kinase C (PKC) activity, and PKC inhibition suppressed BMP-2-induced caspase activity in SaOS2 but not in OHS4 cells that lack BMP-RIB. A dominant negative BMP-RIB inhibited BMP-2-induced caspase activity, whereas wild-type BMP-RIB promoted caspase activity induced by BMP-2 in SaOS2 and MC3T3-E1 cells. Wild-type BMP-RIB rescued the apoptotic response to BMP-2, and a constitutively active BMP-RIB restored the apoptotic signal in OHS4 cells, supporting an essential role for BMP-RIB in osteoblast apoptosis. We also assessed whether BMP-2-induced apoptosis occurred independently of osteoblast differentiation. General inhibition of caspases did not abolish BMP-2-induced alkaline phosphatase and CBFA1/RUNX2 expression in SaOS2 cells. Furthermore, broad caspases inhibition increased matrix mineralization but did not reverse the BMP-2 effect on mineralization in MC3T3-E1 cells. These results indicate that BMP-2-induced apoptosis was mediated by BMP-RIB in osteoblasts and occurred independently of BMP-2-induced osteoblast differentiation, which provides additional insights into the dual mechanism of BMP-2 action on osteoblast fate.  相似文献   

20.
The orphan nuclear receptor Nurr1 is primarily expressed in the central nervous system. It has been shown that Nurr1 is necessary for terminal differentiation of dopaminergic (DA) neurons in ventral midbrain. The receptor, however, is also expressed in other organs including bone, even though the role of Nurr1 is not yet understood. Therefore, we investigated the role of Nurr1 in osteoblast differentiation in MC3T3-E1 cells and calvarial osteoblasts derived from Nurr1 null newborn pups. Our results revealed that reduced Nurr1 expression, using Nurr1 siRNA in MC3T3-E1 cells, affected the expression of osteoblast differentiation marker genes, osteocalcin (OCN) and collagen type I alpha 1 (COL1A1), as measured by quantitative real-time PCR. The activity of alkaline phosphatase (ALP), another osteoblast differentiation marker gene, was also decreased in Nurr1 siRNA-treated MC3T3-E1 cells. In addition, Nurr1 overexpression increased OCN and COL1A1 expression. Furthermore, consistent with these results, during osteoblast differentiation, the expression of osteoblast marker genes was decreased in primary cultured mouse calvarial osteoblasts derived from Nurr1 null mice. Collectively, our results suggest that Nurr1 is important for osteoblast differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号