首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
MicroRNA (miRNA) are significant regulators of neuropathic pain development and neuroinflammation can contribute a lot to the progression of neuropathic pain. Recently, miR-98 has been reported to be involved in various diseases. However, little is known about the role of miR-98 in neuropathic pain development and neuroinflammation. Therefore, our study was aimed to investigate the function of miR-98 in neuropathic pain via establishing a rat model using chronic constriction injury (CCI) of the sciatic nerve. Here, we observed that miR-98 was downregulated in CCI rat models. Overexpression of miR-9 was able to inhibit neuropathic pain progression. Recently, STAT3 has been reported to serve a key role in various processes, including inflammation. Interestingly, our study indicated that STAT3 was dramatically upregulated and activated in CCI rats. By using informatics analysis, STAT3 was predicted as a direct target of miR-98 and the direct correlation was confirmed. Then, miR-98 was overexpressed in CCI rats and it was found that miR-98 was able to repress neuropathic pain development via inhibiting the neuroinflammation. As displayed, interleukin 6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α) expression was obviously induced in CCI rats, while miR-98 reduced their protein levels. Finally, we found that overexpression of STAT3 reversed the inhibitory effect of miR-98 on neuropathic pain development. Taken these together, we reported that overexpression of miR-98 attenuated neuropathic pain development via targeting STAT3 in CCI rat models.  相似文献   

3.
Many studies have verified that microRNAs contribute a lot to neuropathic pain progression. Furthermore, nerve-related inflammatory cytokines play vital roles in neuropathic pain progression. miR-183 has been identified to have a common relationship with multiple pathological diseases. However, the potential effects of miR-183 in the process of neuropathic pain remain undetermined. Therefore, we performed the current study with the purpose of finding the functions of miR-183 in neuropathic pain progression using a chronic sciatic nerve injury (CCI) rat model. We demonstrated that miR-183 expression levels were evidently reduced in CCI rats in contrast with the control group. Overexpression of miR-183 produced significant relief of mechanical hyperalgesia, as well as thermal hyperalgesia in CCI rats. Furthermore, neuropathic pain-correlated inflammatory cytokine expression levels containing interleukin-6 (IL-6) and interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2) were obviously inhibited by upregulation of miR-183. Meanwhile, dual-luciferase reporter assays showed MAP3K4 was a direct downstream gene of miR-183. The expression levels of MAP3K4 were modulated by the increased miR-183 negatively, which lead to the downregulation of IL-6, IL-1β, and COX-2, and then reduced neuropathic pain progression, respectively. Overall, our study pointed out that miR-183 was a part of the negative regulator which could relieve neuropathic pain by targeting MAP3K4. Thus it may provide a new clinical treatment for neuropathic pain patients clinical therapy.  相似文献   

4.
Neuropathic pain is a kind of chronic pain because of dysfunctions of somatosensory nerve system. Recently, many studies have demonstrated that microRNAs (miRs) play crucial roles in neuropathic pain development. This study was designed to investigate the effects of miR-134-5p on the process of neuropathic pain progression in a rat model established by chronic sciatic nerve injury (CCI). First, we observed that miR-134-5p was significantly decreased in CCI rat models. Overexpression of miR-134-5p strongly alleviated neuropathic pain behaviors including mechanical and thermal hyperalgesia. Meanwhile, inflammatory cytokine expression, such as IL-6, IL-1β and TNF-α in CCI rats were greatly repressed by upregulation of miR-134-5p. Twist1 has been widely regarded as a poor prognosis biomarker in diverse diseases. Here, by using bioinformatic analysis, 3′-untranslated region (UTR) of Twist1 was predicted to be a downstream target of miR-134-5p in our study. Here, we found that overexpression of miR-134-5p was able to suppress Twist1 dramatically. Furthermore, it was exhibited that Twist1 was increased in CCI rats time-dependently and Twist1 was inhibited in vivo. Subsequently, downregulation of Twist1 in CCI rats could depress neuropathic pain progression via inhibiting neuroinflammation. In conclusion, our current study indicated that miR-134-5p may inhibit neuropathic pain development through targeting Twist1. Our findings suggested that miR-134-5p might provide a novel therapeutic target for neuropathic pain.  相似文献   

5.
Acute kidney injury (AKI) is a common kidney disease that markedly affects public health. To date, the roles of long noncoding RNA XIST in AKI are poorly understood. Here, we investigated the biological functions of XIST in AKI. We observed that XIST expression increased in patients with AKI and HK-2 cells stimulated by CoCl2. In addition, a rat AKI model induced by ischemia–reperfusion was established. Tumor necrosis factor-α, interleukin-6, and cyclooxygenase-2 messenger RNA expression were induced in vivo; moreover, XIST expression was upregulated. Knockdown of XIST significantly repressed CoCl2-triggered injury in HK-2 cells. However, microRNA (miR)-142-5p, a downstream target of XIST, was downregulated in AKI. miR-142-5p was repressed by XIST and miR-142-5p could inhibit CoCl2-induced injury in HK-2 cells. Moreover, PDCD4 expression was significantly increased in AKI. PDCD4 was predicted to be the target of miR-142-5p. Subsequently, loss of PDCD4 was able to retard injury in HK-2 cells exposed to CoCl2. Thus, we suggest that XIST regulates miR-142-5p and PDCD4, and it has the potential to function as a biomarker in therapeutic strategies for AKI.  相似文献   

6.
Emerging evidence has suggested that microRNAs play a critical role in neuropathic pain development. However, the biological role of miRNAs in regulating neuropathic pain remains barely known. In our present study, we found that miR-124-3p was significantly downregulated in rats after chronic sciatic nerve injury (CCI). In addition, it was showed that overexpression of miR-124-3p obviously repressed mechanical allodynia and heat hyperalgesia. Meanwhile, it has been reported that neuroinflammation can contribute a lot to neuropathic pain progression. Here, we found that inflammatory cytokine (IL-6, IL-1β, and TNF-⍺) protein expression in rats after CCI greatly increased and miR-124-3p mimics depressed inflammation cytokine levels. Consistently, miR-124-3p alleviated inflammation production in lipopolysaccharide-incubated spinal microglial cells. Bioinformatics analysis revealed that EZH2 acted as a direct target of miR-124-3p, which participated in the miR-124-3p-modulated effects on neuropathic pain development and neuroinflammation. We observed that miR-124-3p was able to promote neuroinflammation and neuropathic pain through targeting EZH2. The direct correlation between them was validated in our current study using dual-luciferase reporter assays. Subsequently, it was manifested that EZH2 abrogated the inhibitory role of miR-124-3p on neuropathic pain progression in CCI rats. Taken these together, our findings highlighted a novel contribution of miR-124-3p to neuropathic pain and indicated the possibilities for developing novel therapeutic options for neuropathic pain.  相似文献   

7.
8.
Pancreatic cancer is a serious solid malignant tumor worldwide. Increasing evidence has pointed out that abnormal expressions of long noncoding RNAs are involved in various tumors. Meanwhile, LINC00052 is reported as a famous tumor regulator in several cancers. Nevertheless, the biological role of LINC00052 in pancreatic cancer progression is still unknown. Our study was to explore the specific mechanism of LINC00052 in pancreatic cancer. First, we observed that the LINC00052 was obviously downregulated in several pancreatic cancer cell lines. Overexpression of LINC00052 greatly repressed AsPC-1 and SW1990 cell proliferation, triggered the apoptosis and prevented cell cycle in the G1 phase. For another, AsPC-1 and SW1990 cell migration and invasion capacity were also obviously repressed by LINC00052 upregulation. Moreover, miR-330-3p was elevated in pancreatic cancer cells and can function as a target of LINC00052 confirmed by luciferase reporter and RNA Immunoprecipitation (RIP) experiments. Inhibition of miR-330-3p could depress pancreatic cancer progression while overexpressed miR-330-3p exhibited an opposite process. Finally, our data indicated that the LINC00052 also remarkably suppressed pancreatic tumor growth via modulating miR-330-3p in vivo. To conclude, our study revealed that the LINC00052 might provide a new perspective for pancreatic cancer therapy.  相似文献   

9.
Neuropathic pain has been reported as a type of chronic pain due to the primary dysfunction of the somatosensory nervous system. It is the most serious types of chronic pain, which can lead to a significant public health burden. But, the understanding of the cellular and molecular pathogenesis of neuropathic pain is barely complete. Long noncoding RNAs (lncRNAs) have recently been regarded as modulators of neuronal functions. Growing studies have indicated lncRNAs can exert crucial roles in the development of neuropathic pain. Therefore, our present study focused on the potential role of the lncRNA Colorectal Neoplasia Differentially Expressed (CRNDE) in neuropathic pain progression. Firstly, a chronic constrictive injury (CCI) rat model was built. CRNDE was obviously increased in CCI rats. Interestingly, overexpression of CRNDE enhanced neuropathic pain behaviors. Neuroinflammation was induced by CRNDE and as demonstrated, interleukin-10 (IL-10), IL-1, IL-6, and tumor necrosis factor-α (TNF-α) protein levels in CCI rats were activated by LV-CRNDE. For another, miR-136 was obviously reduced in CCI rats. Previously, it is indicated that miR-136 participates in the spinal cord injury via an inflammation in a rat model. Here, firstly, we verified miR-136 could serve as CRNDE target. Loss of miR-136 triggered neuropathic pain remarkably via the neuroinflammation activation. Additionally, IL6R was indicated as a target of miR-136 and miR-136 regulated its expression. Subsequently, we confirmed that CRNDE could induce interleukin 6 receptor (IL6R) expression positively. Overall, it was implied that CRNDE promoted neuropathic pain progression via modulating miR-136/IL6R axis in CCI rat models.  相似文献   

10.
Previous studies have demonstrated that microRNAs (miRNAs) play important roles in the pathogenesis of neuropathic pain. In the present study, we found that miR-32-5p was significantly upregulated in rats after spinal nerve ligation (SNL), specifically in the spinal microglia of rats with SNL. Functional assays showed that knockdown of miR-32-5p greatly suppressed mechanical allodynia and heat hyperalgesia, and decreased inflammatory cytokine (IL-1β, TNF-α and IL-6) protein expression in rats after SNL. Similarly, miR-32-5p knockdown alleviated cytokine production in lipopolysaccharide (LPS)-treated spinal microglial cells, whereas its overexpression had the opposite effect. Mechanistic investigations revealed Dual-specificity phosphatase 5 (Dusp5) as a direct target of miR-32-5p, which is involved in the miR-32-5p-mediated effects on neuropathic pain and neuroinflammation. We demonstrated for the first time that miR-32-5p promotes neuroinflammation and neuropathic pain development through regulation of Dusp5. Our findings highlight a novel contribution of miR-32-5p to the process of neuropathic pain, and suggest possibilities for the development of novel therapeutic options for neuropathic pain.  相似文献   

11.
MicroRNAs (miRNA) play important roles in neuroinflammation and neuropathic pain development; however, the underlying mechanism requires further investigation. The expression of miR-21-5p was remarkably upregulated in chronic constrictive injury (CCI) rat model. A significant alleviated neuropathic pain development and reduced the expression of cytokines was observed in CCI rat after exogenous injection of miR-21-5p mimic. The dual-luciferase analysis revealed that tissue inhibitor of metalloproteinase-3 (TIMP3) and chemokines C-C motif ligand 1 (CCL1) was direct downstream target of miR-21-5p. Moreover, silencing of TIMP3 and CCL1 could rescue mechanical allodynia, thermal hyperalgesia and cytokine release in CCI rat, suggesting that TIMP3 and CCL1 exert their function by mediating neuroinflammation in neuropathic pain development. Therefore, we have identified a novel miR-21-5p–CCL1/TIMP3-cytokine axis in regulation of neuropathic pain development in CCI rat model, which is valuable for enhancing our understanding of neuropathic pain and developing miRNAs as potential therapeutic options in the future.  相似文献   

12.
13.
14.
《Reproductive biology》2023,23(4):100796
ObjectiveThis study aimed to assess the utility of circulating miR-125b-5p, miR-199a-3p, miR-451a, and miR-3613-5p as biomarkers of endometriosis.Study designPatients with stage III or IV of endometriosis according to the revised American Society of Reproductive Medicine (rASRM) staging classification, as well as control women, were recruited. We created a prospective study conducted on a group of 48 patients (n = 25 controls, n = 24 endometriosis) who had laparoscopic surgery. Blood samples were taken and plasma miRNA levels were measured by quantitative real-time polymerase chain reaction (RT-qPCR) and assessed with AUC and ROC curves.ResultsMiR-451a and miR-3613-5p were significantly decreased in the plasma of endometriosis patients. miR-451a had a receiver-operating characteristic (ROC) area under the curve 0.8283 and miR-3613-5p had a ROC area under the curve 0.7617. The concentration of circulating miR-125b-5p and miR-199-3p did not differ between endometriosis patients and controls. Plasma miRNA levels did not change with BMI, smoking status, fertility problems, or menstrual pain according to the VAS scale (p > 0.05).ConclusionCirculating miR-451a and miR-3613-5p levels significantly differed between endometriosis and controls. However, the levels of miR-451a were discordant with previous studies. Therefore, miR-3613-5p may have better potential as the endometriosis biomarker. Circulating miR-125b-5p and miR-199a-3p cannot be used as reliable markers of endometriosis.  相似文献   

15.
目的:使用microRNAs基因芯片及实时定量PCR法测定骨肉瘤组织中miR-15a-5p和miR-16-5p的相对表达含量,并与瘤旁组织对比,分析骨肉瘤细胞内miR-15a-5p和miR-16-5p的表达变化。方法:选取34例骨肉瘤组织蜡块样本,使用microRNAs基因芯片观察miR-15a-5p和miR-16-5p在骨肉瘤和瘤旁组织内的表达差异;实时定量PCR法测定骨肉瘤组织和瘤旁组织中miR-15a-5p和miR-16-5p的相对表达含量,并将两种结果对比分析。结果:microRNAs基因芯片结果显示,在骨肉瘤组织中,miR-15a-5p在肿瘤中的表达较瘤旁组织低1.79倍,miR-16-5p较瘤旁组织低1.62倍。实时定量PCR实验结果表明,miR-15a-5p和miR-16-5p表达较瘤旁组织降低,差异有统计学意义(P0.05)。经过统计学计算,miR-15a-5p在肿瘤中的表达较瘤旁组织低3.14倍,miR-16-5p较瘤旁组织低5.65倍。结论:在骨肉瘤中,miR-15a-5p和miR-16-5p表达含量降低,提示这两种microRNAs在骨肉瘤中可能做为抑癌因子存在。  相似文献   

16.
17.
昆虫和植物在长期进化过程中形成相互作用的关系。其中植物次生物质是植物防御昆虫的主要机制,而昆虫则以解毒酶来应对。为了发现可用于害虫防治的miRNA,通过对农业害虫斜纹夜蛾Spodoptera litura进食芥菜Brassica juncea后中肠的测序分析,获得了一系列差异表达的miRNA。通过生物信息学分析,发现斜纹夜蛾miR-305-3p靶向了谷胱甘肽代谢中的谷氨酸半胱氨酸连接酶的催化亚基(Slgclc),这是一个谷胱甘肽从头合成的限速酶;而miR-71-5p靶向调控gclc和解毒酶表达的转录因子SlNrf2。用芥菜的次生物质吲哚-3-甲醇处理斜纹夜蛾Spli-221细胞株后,实时荧光定量PCR证明Slgclc和SlNrf2表达上调,miR-305-3p和miR-71-5p表达下调。分别在斜纹夜蛾Spli-221细胞中超表达miR-305-3p及miR-71-5p mimics,Slgclc或SlNrf2转录水平下调,并且miR-71-5p mimic处理抑制了SlNrf2下游基因Slgclc和解毒酶谷胱甘肽S-转移酶(GSTs)的表达。结果表明:miR-305-3p和miR-71-5p响应植物次生物质而分别促进Slgclc和SlNrf2表达。然而双荧光素酶实验显示miR-305-3p并不与Slgclc直接结合,miR-71-5p也不与SlNrf2直接结合,推测miR-305-3p和miR-71-5p可能间接调控Slgclc和SlNrf2的表达。研究结果表明,斜纹夜蛾miR-305-3p和miR-71-5p通过调控解毒酶GSTs表达及其底物谷胱甘肽的生成,而参与昆虫抵抗植物次生物质。  相似文献   

18.
19.
20.
MicroRNAs (miRNAs) play critical roles in cancer pathobiology, acting as regulators of gene expression and pivotal drivers of tumorigenesis. It is believed that miRNAs act through canonical mechanisms, involving the binding of mature miRNAs to target messenger RNAs (mRNAs) and subsequent repression of protein translation or degradation of target mRNAs. miR-142-3p/5p has been extensively studied and established as a key regulator in various malignancies. Recent discoveries have revealed miR-142-3p/5p serve as either oncogene or tumor suppressor in cancer. By targeting epigenetic factor and cancer-related signaling pathway, miR-142-3p/5p can regulate wide range of downstream genes. The immune modulatory role of miR-142-3p/5p has been shown in various cancers, which provides significant insight into immunosuppression and tumor escape from the immune response. Exosomes with miR-142-3p/5p facilitate cell communication and can affect cancer cell behavior, offering potential therapeutic, and diagnosis applications in cancer therapy. In this review, for the first time, we comprehensively summarize the current knowledge regarding mentioned functions of miR-142-3p/5p in cancer pathobiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号