首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Du R  Sun W  Xia L  Zhao A  Yu Y  Zhao L  Wang H  Huang C  Sun S 《PloS one》2012,7(2):e30771

Background

Hypoxia-induced renal tubular cell epithelial–mesenchymal transition (EMT) is an important event leading to renal fibrosis. MicroRNAs (miRNAs) are small non-coding RNA molecules that bind to their mRNA targets, thereby leading to translational repression. The role of miRNA in hypoxia-induced EMT is largely unknown.

Methodology/Principal Findings

miRNA profiling was performed for the identification of differentially expressed miRNAs in HK-2 cells under normal and low oxygen, and the results were then verified by quantitative real time RT-PCR (qRT-PCR). The function of miRNAs in hypoxia-induced renal tubular cell EMT was assessed by the transfection of specific miRNA inhibitors and mimics. Luciferase reporter gene assays and western blot analysis were performed to validate the target genes of miR-34a. siRNA against Jagged1 was designed to investigate the role of the miR-34a-Notch pathway in hypoxia induced renal tubular cell EMT. miRNA-34a was identified as being downregulated in hypoxic renal tubular epithelial cells. Inhibition of miR-34a expression in HK-2 cells, which highly express endogenous miR-34a, promoted a mesenchymal phenotype accompanied by reduced expression of the epithelial marker Z0-1, E-cadherin and increased expression of the mesenchymal markers α-SMA and vimentin. Conversely, miR-34a mimics effectively prevented hypoxia-induced EMT. Transfection of miRNA-34a in HK-2 cells under hypoxia abolished hypoxia-induced expression of Notch1 and Jagged1 as well as Notch downstream signals, such as snail. Western blot analysis and luciferase reporter gene assays showed direct evidence for miR-34a targeting Notch1 and Jagged1. siRNAs against Jagged1 or Notch1 effectively prevented miR-34a inhibitor-induced tubular epithelial cell EMT.

Conclusions/Significance

Our study provides evidence that the hypoxia-induced decrease of miR-34a expression could promote EMT in renal tubular epithelial cells by directly targeting Notch1 and Jagged1, and subsequently, Notch downstream signaling.  相似文献   

2.
3.
The current study aimed to explore the functions and roles of microRNA-193b (miR-193b) in the myocardium with ischemia-reperfusion (I/R) injury and a potential therapeutic method for myocardial I/R injury. The mice were subjected to myocardial I/R with or without miR-193b pretreatment. The infarct size and myocardial enzymes were detected. The terminal deoxynucleotidyl transferase dUTP nick-end labeling assay was conducted to investigate the effect of miR-193b on cardiomyocyte apoptosis. The expression levels of miR-193b and mastermind-like 1 (MAML1) were validated by quantitative real-time polymerase chain reaction and Western blot analysis. The results suggested that the miR-193b expression level was significantly downregulated in the myocardium with I/R injury compared with control group. miR-193b overexpression is able to reduce infarct size and myocardial enzymes after myocardial I/R injury. Furthermore, overexpression of miR-193b could alleviate the apoptosis level after myocardial I/R injury. Taken together, the present study demonstrated that upregulated miRNA-193b alleviated myocardial I/R injury via targeting MAML1.  相似文献   

4.
Myocardial dysfunction is a major cause of death in sepsis. MicroRNA-146b (miR-146b) has been reported to be related to myocardial disease. However, the role of miR-146b in sepsis as well as myocardial injury is still unclear. Septic cardiac dysfunction in mice was induced by cecal ligation and puncture (CLP) and miR-146b was found increased significantly in the myocardium tissue of CLP mice. It was found that up-regulation of miR-146b by agomiR injection suppressed expression of IL-1β in mice as well as myocardium apoptosis in CLP mice. However, suppression of miR-146b by antagomiR injection had inverse effects. Notch1 was identified as a target gene of miR-146b by bioinformatics analysis. And it was verified that in cardiomyocytes, the decrease of miR146b led to increase of both the mRNA and protein level of Notch1 and vice versa. In septic mice serum stimulated cardiomyocytes, up-regulation of miR-146b decreased the level of Notch1 and Hes1. The knockout of Notch1 in transgenic mice showed that the deficiency of Notch1 improved myocardial injury induced by CLP operation. The apoptosis of cardiomyocytes was relieved and the expression of IL-1β was decreased. In conclusion, miR-146b targets to Notch1 and protected cardiomyocytes against inflammation and apoptosis.  相似文献   

5.
Podocytopathy and tubular interstitial fibrosis impact on renal outcomes of IgA nephropathy (IgAN). We found that level of miR-21 was up regulated in both glomerular and tubular–interstitial tissues of patients with IgAN. Enhanced expression of miR-21 mainly located in podocytes and tubular cells. Mesangial cell derived cytokines contributed to the increase of miR-21 in podocytes and HK2 cells. IgA-HMC medium prepared with pIgA from IgAN, lead to obvious fibrogenic activation, evidenced by the loss of Podocin and CD2AP in podocytes, loss of E-cadherin and Megalin in HK2 cells and increase of FN and Col I in both cells. miR-21 targeted PTEN in these cells. Expression of PTEN was decreased and phosphorylation of Akt was increased in podocytes and HK2 cells exposed to the medium prepared with pIgA from IgAN. Inhibition of miR-21 preserved the expression of PTEN, prevented the activation of Akt and inhibited the fibrogenic activation in podocytes and HK2 cells exposed to the IgA-HMC medium prepared with pIgA from IgAN. In conclusion, our study suggests that inhibition of miR-21 prevents fibrogenic activation in podocytes and tubular cells by preventing PTEN/Akt pathway activation in IgAN.  相似文献   

6.
摘要 目的:探讨非小细胞肺癌(NSCLC)组织微小核糖核酸(miRNA)-1179、miR-1182表达与缺口(Notch)信号通路、临床病理特征和预后的关系。方法:选取2018年1月~2019年12月武汉市中医医院收治的118例NSCLC患者,收集手术切除的癌组织和癌旁组织标本,采用实时荧光定量聚合酶链式反应检测miR-1179、miR-1182和Notch信号通路相关分子表达。分析miR-1179、miR-1182表达与Notch信号通路相关分子和NSCLC患者临床病理特征的关系。根据NSCLC组织中miR-1179、miR-1182表达均值分为高、低表达组,采用K-M法绘制不同miR-1179、miR-1182表达NSCLC患者生存曲线,多因素Cox回归分析NSCLC患者预后的影响因素。结果:与癌旁组织比较,NSCLC组织中miR-1179、miR-1182表达降低,Notch受体1(Notch1) 信使核糖核酸(mRNA)、Notch2 mRNA、Notch3 mRNA、Notch4 mRNA表达升高(P<0.05)。Pearson相关性分析显示,NSCLC组织中miR-1179、miR-1182表达与Notch1 mRNA、Notch2 mRNA、Notch3 mRNA、Notch4 mRNA表达均呈负相关(P<0.05)。不同分化程度、TNM分期、淋巴结转移NSCLC患者miR-1179、miR-1182表达比较有统计学差异(P<0.05)。118例NSCLC患者随访3年,失访5例,3年总生存率为55.75%。K-M生存曲线分析显示,miR-1179、miR-1182高表达组总生存率高于低表达组(P<0.05)。多因素Cox回归分析显示,低分化、TNM分期Ⅲ期、淋巴结转移为NSCLC患者预后的独立危险因素,miR-1179、miR-1182升高为其独立保护因素(P<0.05)。结论:NSCLC组织中miR-1179、miR-1182低表达,与Notch信号通路、分化程度、TNM分期、淋巴结转移和预后有关,miR-1179、miR-1182表达可能通过抑制Notch信号通路发挥抑癌作用。  相似文献   

7.
Adrenomedullin (AM) is postulated to exert organ-protective effects. It is expressed in the renal glomeruli, but its roles in the glomerular podocytes have been poorly elucidated. In the present study, we investigated the expression and regulation of AM in recently established conditionally immortalized mouse podocyte cell line in vitro and podocyte injury model in vivo. The cultured differentiated podocytes expressed AM mRNA and secreted measurable amount of AM. AM secretion from the podocytes was increased by H(2)O(2), hypoxia, puromycin aminonucleoside (PAN), albumin overload, and TNF-alpha. Real-time RT-PCR analysis revealed that AM mRNA expression in the podocytes was enhanced by PAN and TNF-alpha, both of which were suppressed by mitochondrial antioxidants. Furthermore, AM expression was upregulated in the glomerular podocytes of PAN nephrosis rats. These results indicated that AM expression in the podocytes was upregulated by stimuli or condition relevant to podocyte injury, suggesting its potential role in podocyte pathophysiology.  相似文献   

8.
The state-of-the-art cultured podocyte is conditionally immortalized by expression of a temperature-sensitive mutant of the SV40 large-T antigen. These cultures proliferate at 33°C and differentiate at 37°C into arborized cells that more closely resemble in vivo podocytes. However, the degree of resemblance remains controversial. In this study, several parameters were measured in podocyte cell lines derived from mouse (JR, KE), human (MS), and rat (HK). In all lines, the quantities of NEPH1 and podocin proteins and NEPH1 and SYNPO mRNAs were comparable to glomeruli, while synaptopodin and nephrin proteins and NPHS1 and NPHS2 mRNAs were <5% of glomerular levels. Expression of Wilms' tumor-1 (WT1) mRNA in mouse lines was comparable to glomeruli, but rat and human lines expressed little WT1. Undifferentiated human and mouse lines had similar proliferation rates that decreased after differentiation, while the rate in rat cells remained constant. The motility of different lines varied as measured by both general motility and wound-healing assays. The toxicity of puromycin aminonucleoside was MS ~ JR > KE, and of doxorubicin was JR ~ KE > MS, while HK cells were almost unaffected. Process formation was largely a result of contractile action after formation of lamellipodia. These findings demonstrate dramatic differences in marker expression, response to toxins, and motility between lines of podocytes from different species and even between similarly-derived mouse lines.  相似文献   

9.
Glomerular podocytes are integral members of the glomerular filtration barrier in the kidney and are crucial for glomerular permselectivity. These highly differentiated cells are vulnerable to an array of noxious stimuli that prevail in several glomerular diseases. Elevated circulating growth hormone (GH) levels are associated with podocyte injury and proteinuria in diabetes. However, the precise mechanism(s) by which excess GH elicits podocytopathy remains to be elucidated. Previous studies have shown that podocytes express GH receptor (GHR) and induce Notch signaling when exposed to GH. In the present study, we demonstrated that GH induces TGF-β1 signaling and provokes cell cycle reentry of otherwise quiescent podocytes. Though differentiated podocytes reenter the cell cycle in response to GH and TGF-β1, they cannot accomplish cytokinesis, despite karyokinesis. Owing to this aberrant cell cycle event, GH- or TGF-β1-treated cells remain binucleated and undergo mitotic catastrophe. Importantly, inhibition of JAK2, TGFBR1 (TGF-β receptor 1), or Notch prevented cell cycle reentry of podocytes and protected them from mitotic catastrophe associated with cell death. Inhibition of Notch activation prevents GH-dependent podocyte injury and proteinuria. Similarly, attenuation of GHR expression abated Notch activation in podocytes. Kidney biopsy sections from patients with diabetic nephropathy (DN) show activation of Notch signaling and binucleated podocytes. These data indicate that excess GH induced TGF-β1-dependent Notch1 signaling contributes to the mitotic catastrophe of podocytes. This study highlights the role of aberrant GH signaling in podocytopathy and the potential application of TGF-β1 or Notch inhibitors, as a therapeutic agent for DN.Subject terms: Podocytes, Diabetic nephropathy  相似文献   

10.
摘要 目的:探讨芪地固肾方治疗膜性肾病(MN)大鼠的效果及其可能的机制。方法:将40只SD雄性大鼠随机分为模型组(等剂量生理盐水尾静脉注射)、雷公藤多甙片组(10 mg/kg雷公藤多甙片)、芪地固肾方低剂量组(15.425 g/kg芪地固肾方)、芪地固肾方高剂量组(61.7 g/kg芪地固肾方)四组,另取10只未造模大鼠作为空白组(等剂量生理盐水尾静脉注射),连续干预28天后,检测24小时尿蛋白定量(U-TP)、血清总蛋白(TP)、白蛋白(ALB)、谷丙转氨酶(ALT)、谷草转氨酶(AST)、血肌酐(Scr)、尿素氮(BUN)的变化;HE染色、透射电镜观察大鼠肾组织病理学改变;RT-PCR检测肾组织中nephrin蛋白、podocin mRNA的表达。结果:与空白组比较,模型组24 hU-TP、足细胞nephrin和podocin mRNA显著升高,血清TP和ALB显著降低(P<0.01);与模型组比较,各给药组24 hU-TP降低,血清TP和ALB显著升高(P<0.05);肾组织免疫复合物沉积减少,肾小球基底膜增厚减轻;足细胞nephrin和podocin mRNA表达升高(P<0.05)。结论:芪地固肾方能够降低MN模型大鼠的尿蛋白水平,减轻肾脏病理损伤,上调肾组织中足细胞裂孔隔膜蛋白nephrin和podocin mRNA的表达,延缓膜性肾病的进展。  相似文献   

11.
目的:通过敲低微小RNA (microRNA,miRNA)-449a的方法研究miR-449a对人乳腺癌细胞MCF-7的增殖和迁移能力的影响。方法:采用miRNA芯片在乳腺癌细胞MCF-7和人正常乳腺细胞MCF-10A筛选具有表达差异的miRNA;化学合成法制备miR-449a的抑制剂(inhibitor),转染后经real-time PCR验证表达的变化;细胞增殖CCK-8实验对转染后细胞增殖能力进行检测;划痕实验检测细胞转移能力,transwell小室实验检测细胞侵袭的改变;蛋白免疫印迹法(Western blot)实验对MCF-7细胞增殖和迁移相关的β-catenin和E-cadherin蛋白进行检测;通过生物信息学软件预测miR-449a潜在靶基因为Notch 1,荧光素酶实验检测Notch 1是miR-449a的靶基因。结果:分别收集MCF-7和MCF-10A细胞,芯片结果显示miR-449a在MCF-7细胞的表达水平显著高于MCF-10A;本研究将细胞分为未处理组(Mock组),阴性对照组(negative control组,NC组)和处理组,通过收集不同组MCF-7细胞进行试验,CCK-8结果显示miR-449a下调后MCF-7细胞增殖能力显著降低;划痕实验结果显示miR-449a表达降低导致MCF-7细胞转移能力降低;transwell实验结果显示MCF-7细胞侵袭受到抑制;Western blot结果发现miR-449a敲低后β-catenin表达降低,E-cadherin表达增加;荧光素酶试验结果显示,miR-449a能够显著降低Notch 1-3'-UTR质粒的荧光素活性(P<0.01)。结论:在乳腺癌细胞MCF-7中敲低miR-449a能够显著抑制癌细胞增殖和迁移,而这一变化可能通过降低Notch 1蛋白表达实现的。  相似文献   

12.
Podocyte injury and depletion are essential events involved in the pathogenesis of diabetic nephropathy (DN). As a terminally differentiated cell, podocyte is restricted in ‘post‐mitosis’ state and unable to regenerate. Re‐entering mitotic phase will cause podocyte disastrous death which is defined as mitotic catastrophe (MC). Murine double minute 2 (MDM2), a cell cycle regulator, is widely expressed in renal resident cells including podocytes. Here, we explore whether MDM2 is involved in podocyte MC during hyperglycaemia. We found aberrant mitotic podocytes with multi‐nucleation in DN patients. In vitro, cultured podocytes treated by high glucose (HG) also showed an up‐regulation of mitotic markers and abnormal mitotic status, accompanied by elevated expression of MDM2. HG exposure forced podocytes to enter into S phase and bypass G2/M checkpoint with enhanced expression of Ki67, cyclin B1, Aurora B and p‐H3. Genetic deletion of MDM2 partly reversed HG‐induced mitotic phase re‐entering of podocytes. Moreover, HG‐induced podocyte injury was alleviated by MDM2 knocking down but not by nutlin‐3a, an inhibitor of MDM2‐p53 interaction. Interestingly, knocking down MDM2 or MDM2 overexpression showed inhibition or activation of Notch1 signalling, respectively. In addition, genetic silencing of Notch1 prevented HG‐mediated podocyte MC. In conclusion, high glucose up‐regulates MDM2 expression and leads to podocyte MC. Notch1 signalling is an essential downstream pathway of MDM2 in mediating HG‐induced MC in podocytes.  相似文献   

13.
Podocyte injury is considered to play important roles in the pathogenesis of human glomerular disease. There is accumulating evidence suggesting that hepatocyte growth factor (HGF) elicits preventive activity for glomerular cells in animal models of chronic renal diseases. In this study, we demonstrated that delivery of a naked plasmid vector encoding the human HGF gene into mice by a hydrodynamic-based in vivo gene transfection approach markedly reduced proteinuria and attenuated podocyte injury in a mouse model induced by puromycin aminonucleoside (PAN) injection. Systemic administration by rapid injection via the tail vein of a naked plasmid containing HGF cDNA driven under a cytomegalovirus promoter (pCMV-HGF) produced a remarkable level of human HGF protein in the circulation. Tissue distribution studies suggested that the kidney expressed a high level of the HGF transgene. Meanwhile, compared with tubules and interstitium, a higher level of exogenous HGF protein was detected in the glomeruli. Administration of pCMV-HGF dramatically abated the urine albumin excretion and podocyte injury in PAN nephropathy in mice. Exogenous expression of HGF produced evidently beneficial effects, leading to restoration of Wilms' tumor-1 (WT1) and α-actinin-4 expression and attenuation of ultrastructural damage of the podocytes. In vitro, HGF not only restored WT1 and α-actinin-4 expression but also inhibited albumin leakage of podocytes incubated with PAN in a Transwell culture chamber. These results suggest that HGF might provide a novel strategy for amelioration of podocyte injury.  相似文献   

14.
15.
16.
Renal ischaemia/reperfusion (I/R) injury may induce kidney damage and dysfunction, in which oxidative stress and apoptosis play important roles. Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) are reported to be closely related to renal I/R, but the specific molecular mechanism is still unclear. The purpose of this research was to explore the regulatory effect of lncRNA TUG1 on oxidative stress and apoptosis in renal I/R injury. This research revealed that in renal I/R injury and hypoxia/reperfusion (H/R) injury in vitro, the expression level of lncRNA TUG1 was upregulated, and oxidative stress levels and apoptosis levels were negatively correlated with the expression level of lncRNA TUG1. Using bioinformatics databases such as TargetScan and microRNA.org, microRNA-144-3p (miR-144-3p) was predicted to be involved in the association between lncRNA TUG1 and Nrf2. This study confirmed that the level of miR-144-3p was significantly reduced following renal I/R injury and H/R injury in vitro, and miR-144-3p was determined to target Nrf2 and inhibit its expression. In addition, lncRNA TUG1 can reduce the inhibitory effect of miR-144-3p on Nrf2 by sponging miR-144-3p. In summary, our research shows that lncRNA TUG1 regulates oxidative stress and apoptosis during renal I/R injury through the miR-144-3p/Nrf2 axis, which may be a new treatment target for renal I/R injury.  相似文献   

17.
摘要 目的:探究微小核糖核酸(miR)-152-3p调控果蝇Notch同源物1(Notch1)/Delta样配体4(DLL4)通路对家兔深II度烧伤创面血管生成的影响。方法:将50只新西兰家兔随机分为对照组、模型组、miR-152-3p拮抗剂(antagomir)组、miR-152-3p antagomir阴性对照+空载组、miR-152-3p antagomir+Notch1敲低组,每组10只,除对照组外其余各组家兔构建深II度烧伤模型,分组给药处理后,实时荧光定量聚合酶链式反应(qRT-PCR)检测各组家兔创面组织miR-152-3p与Notch1、DLL4 mRNA表达;检测各组家兔创面愈合率及微循环血流灌注值(MPD);免疫组织化学染色检测各组家兔创面微血管密度(MVD);酶联免疫吸附反应(ELISA)检测各组家兔血清血管内皮细胞生长因子(VEGF)及促血管生成素1(Ang1)水平;免疫印迹检测各组家兔创面组织VEGF、Ang1与Notch1/DLL4通路蛋白表达;双荧光素酶报告基因实验检测兔脐静脉内皮细胞中miR-152-3p对Notch1及DLL4的靶向调节。结果:与对照组相比,模型组家兔创面组织miR-152-3p与Notch1、DLL4 mRNA表达升高(P<0.05),创面MPD及MVD、血清VEGF及Ang1水平、创面组织VEGF与Ang1蛋白表达降低(P<0.05)。与模型组相比,miR-152-3p antagomir组家兔创面组织miR-152-3p mRNA表达降低(P<0.05),创面愈合率、创面MPD及MVD、血清VEGF及Ang1水平、创面组织Notch1、DLL4 mRNA及蛋白表达、创面组织VEGF与Ang1蛋白表达升高(P<0.05);miR-152-3p antagomir阴性对照+空载组家兔各指标无明显差异(P>0.05);与miR-152-3p antagomir组相比,miR-152-3p antagomir+Notch1敲低组家兔创面组织miR-152-3p mRNA表达无明显差异(P>0.05),创面愈合率、创面MPD及MVD、血清VEGF及Ang1水平、创面组织Notch1、DLL4 mRNA及蛋白表达、创面组织VEGF与Ang1蛋白表达降低(P<0.05)。miR-152-3p可靶向下调兔脐静脉内皮细胞中Notch1及DLL4的表达。结论:敲低miR-152-3p可通过上调Notch1/DLL4通路而增强家兔深II度烧伤创面血管生成,进而促进其创面愈合。  相似文献   

18.
19.
Proteinuria has been recently shown to be an independent risk factor for the progression of chronic nephropathies, but the actual mechanisms by which urinary protein load damages renal tissue in humans remain unsolved. Using real-time RT-PCR method we evaluated intrarenal mRNA expression of various cytokines and chemokines in patients with biopsy-proven IgA nephropathy (IgAN, n=11), membranous nephropathy (MN, n=6) and focal and segmental glomerulosclerosis (FSGS, n=6) who exhibited proteinuria over 0.5 g/day. There was a significant positive correlation between the proteinuria extent and the intrarenal RANTES (regulated upon activation normal T cell expressed and secreted) mRNA expression in patients with IgAN, a similar trend was also observed in patients with MN and FSGS. There were no clear relationships between the proteinuria and intrarenal mRNA expression of tumor necrosis factor alpha, transforming growth factor beta1 and monocyte chemoattractant peptide-1. There were no differences in the pattern of cytokine mRNA expression between different glomerulopathies. In conclusion, our results support the hypothesis that lymphocytes, macrophages and their products provoke tissue injury in response to proteinuria independently of the nature of renal diseases in man.  相似文献   

20.
Glomerular protein handling mechanisms have received much attention in studies of nephrotic syndrome. Histopathological findings in renal biopsies from severely proteinuric patients support the likelihood of protein endocytosis by podocytes. ClC-5 is involved in the endocytosis of albumin in the proximal tubule.

Aim

To investigate whether ClC-5 is expressed in the glomerular compartment and whether it has a role in proteinuric nephropathies. ClC-5 expression was studied using Real-time PCR in manually- and laser-microdissected biopsies from patients with type 2 diabetes (n 37) and IgA nephropathy (n 10); in biopsies of membranous glomerulopathy (MG) (n 14) immunohistochemistry for ClC-5 (with morphometric analysis) and for WT1 was done. Controls: cortical tissue (n 23) obtained from unaffected parts of tumor-related nephrectomy specimens.

Results

ClC-5 was expressed at glomerular level in all biopsies. Glomerular ClC-5 levels were significantly higher in diabetic nephropaty and MG at both mRNA and protein level (p<0.002; p<0.01). ClC-5 and WT1 double-staining analysis in MG showed that ClC-5 was localized in the podocytes. ClC-5 ultrastructural immunolocalization was demonstrated in podocytes foot processes. Our study is the first to demonstrate that ClC-5 is expressed in human podocytes. The ClC-5 overexpression found in biopsies of proteinuric patients suggests that proteinuria may play a part in its expression and that podocytes are likely to have a key role in albumin handling in proteinuric states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号