首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 230 毫秒
1.
《Epigenetics》2013,8(2):64-68
The SWI/SNF complex is a chromatin-remodeling complex that uses the energy of ATP hydrolysis to modify chromatin structure in order to regulate gene expression. The SWI/SNF complex is evolutionarily conserved in all eukaryotes and is comprised of a catalytic subunit, either of BRG1 (also known as SMARCA4) or of BRM (also known as SMARCA2), and a variety of associated proteins that can modulate the recruitment of the complex and its activity. Key observations link the SWI/SNF complex with cancer. First, two of its subunits (SNF5 and BRG1) bear cancer-inactivating mutations and thus are bona fide tumor suppressors. The SNF5 gene is biallelically inactivated in malignant rhabdoid tumors (MRTs) whereas BRG1 is mutated in cancer cell lines of several types, such as those of the breast, prostate, lung, pancreas and colon. Second, mice heterozygous for mutations at Snf5 and Brg1 are cancer-prone, and, third, BRG1 binds or is related to important tumor-suppressor proteins. The present review focuses on the biological function and genetics of BRG1, particularly with respect to its role as a tumor suppressor.  相似文献   

2.
The ATPase subunits of the SWI/SNF chromatin remodeling enzymes, Brahma (BRM) and Brahma‐related gene 1 (BRG1), can induce cell cycle arrest in BRM and BRG1 deficient tumor cell lines, and mice heterozygous for Brg1 are pre‐disposed to breast tumors, implicating loss of BRG1 as a mechanism for unregulated cell proliferation. To test the hypothesis that loss of BRG1 can contribute to breast cancer, we utilized RNA interference to reduce the amounts of BRM or BRG1 protein in the nonmalignant mammary epithelial cell line, MCF‐10A. When grown in reconstituted basement membrane (rBM), these cells develop into acini that resemble the lobes of normal breast tissue. Contrary to expectations, knockdown of either BRM or BRG1 resulted in an inhibition of cell proliferation in monolayer cultures. This inhibition was strikingly enhanced in three‐dimensional rBM culture, although some BRM‐depleted cells were later able to resume proliferation. Cells did not arrest in any specific stage of the cell cycle; instead, the cell cycle length increased by approximately 50%. Thus, SWI/SNF ATPases promote cell cycle progression in nonmalignant mammary epithelial cells. J. Cell. Physiol. 223:667–678, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
4.
5.
6.
7.
BRCA1 is a tumor suppressor gene linked to familial breast and ovarian cancer. The BRCA1 protein has been implicated in a diverse set of cellular functions, including activation of gene expression by the p53 tumor suppressor and control of homologous recombination (HR) during DNA repair. Prior reports have demonstrated that BRCA1 can exist in cells in a complex with the BRG1-based SWI/SNF ATP-dependent chromatin remodeling enzymes and that SWI/SNF components contribute to p53-mediated gene activation. To investigate the link between SWI/SNF function and BRCA1 mediated effects on p53-mediated gene activation and on mechanisms of homologous recombination, we have utilized mammalian cells that inducibly express an ATPase-deficient, dominant negative SWI/SNF enzymes. Mutant SWI/SNF ATPases retain the ability to interact with BRCA1 in cells. We report that expression of dominant negative SWI/SNF enzymes does not affect p53-mediated induction of the p21 cyclin dependent kinase inhibitor or the Mdm2 E3 ubiquitin ligase that regulates p53 in cells exposed to UV or gamma irradiation. Similarly, integration of a reporter that monitors homologous recombination by gene conversion into these cells demonstrated no change in the recombination rate in the absence of functional SWI/SNF enzyme. We conclude that the SWI/SNF chromatin remodeling enzymes may contribute to but are not required for these processes.  相似文献   

8.
肺癌组织和肿瘤细胞系中BRG1的表达分析   总被引:6,自引:1,他引:5  
BRG1(brahma—related gene 1)是进化上高度保守的SWI/SNF染色质重塑复合物的成员之一.研究表明:BRG1具有抑瘤基因的特征,可能与肿瘤的发生发展有关.我们采用RT—PCR、Northern杂交和Western blotting证实:肺腺癌细胞系A549和鼻咽癌细胞系HNE2、HNE3、CNE1中无BRG1的表达,而肺鳞癌细胞系NCI-H520、永生化正常人支气管上皮细胞系HBE和鼻咽癌细胞系HONE1、HNE1、CNE2中有BRG1的表达.同时,通过RT—PCR检测10例肺癌组织标本.发现60%(6/10)的肺癌组织中日RGG1的mRNA水平明显下调,而配对正常肺组织中BRG1的mRNA表达未见改变.对29例肺癌组织和10例配对正常肺组织切片进行免疫组化染色,结果显示:肺癌组织中BRG1蛋白表达的阳性率为37.9%(11/29),配对正常肺组织中BRG1蛋白表达的阳性率为90%(9/10),两者的差异有显著性(P〈0.05).这提示BRG1确实在肺癌组织及多种肿瘤细胞系中表达下调或缺失,在肺癌发病过程中可能起一定的作用.  相似文献   

9.
Rhabdoid tumors of early infancy are highly aggressive with consequent poor prognosis. Most cases show inactivation of the SMARCB1 (also known as INI1 and hSNF5) tumor suppressor, a core member of the ATP-dependent SWI/SNF chromatin-remodeling complex. Familial cases, described as rhabdoid tumor predisposition syndrome (RTPS), have been linked to heterozygous SMARCB1 germline mutations. We identified inactivation of another member of the SWI/SNF chromatin-remodeling complex, its ATPase subunit SMARCA4 (also known as BRG1), due to a SMARCA4/BRG1 germline mutation and loss of heterozygosity by uniparental disomy in the tumor cells of two sisters with rhabdoid tumors lacking SMARCB1 mutations. SMARCA4 is thus a second member of the SWI/SNF complex involved in cancer predisposition. Its general involvement in other tumor entities remains to be established.  相似文献   

10.
11.
BRG1, a core component of the SWI/SNF chromatin-remodeling complex, has been implicated in cancer development; however, the biological significance of BRG1 in breast cancer remains unknown. We explored the role of BRG1 in human breast cancer pathogenesis. Using tissue microarray and immunohistochemistry, we evaluated BRG1 staining in 437 breast cancer specimens and investigated its role in breast cancer cell proliferation, migration and invasion. Our Kaplan-Meier survival curves showed that high BRG1 expression is inversely correlated with both overall (P = 0.000) and disease-specific (P = 0.000) 5-year patient survival. Furthermore, we found that knockdown of BRG1 by RNA interference markedly inhibits cell proliferation and causes cessation of cell cycle. This reduced cell proliferation is due to G1 phase arrest as cyclin D1 and cyclin E are diminished whereas p27 is upregulated. Moreover, BRG1 depletion induces the expression of TIMP-2 but reduces MMP-2, thereby inhibiting the ability of cells to migrate and to invade. These results highlight the importance of BRG1 in breast cancer pathogenesis and BRG1 may serve as a prognostic marker as well as a potentially selective therapeutic target.  相似文献   

12.
13.
14.
15.
16.
17.
Unfolding of the gene expression program that converts precursor cells to their terminally differentiated counterparts is critically dependent on the nucleosome-remodeling activity of the mammalian SWI/SNF complex. The complex can be powered by either of two alternative ATPases, BRM or BRG1. BRG1 is critical for development and the activation of tissue specific genes and is found in two major stable configurations. The complex of BRG1-associated factors termed BAF is the originally characterized form of mammalian SWI/SNF. A more recently recognized configuration shares many of the same subunits but is termed PBAF in recognition of a unique subunit, the polybromo protein (PBRM1). Two other unique subunits, BRD7 and ARID2, are also diagnostic of PBAF. PBAF plays an essential role in development, apparent from the embryonic lethality of Pbmr1-null mice, but very little is known about the role of PBAF, or its signature subunits, in tissue-specific gene expression in individual differentiation programs. Osteoblast differentiation is an attractive model for tissue-specific gene expression because the process is highly regulated and remains tightly synchronized over a period of several weeks. This model was used here, with a stable shRNA-mediated depletion approach, to examine the role of the signature PBAF subunit, ARID2, during differentiation. This analysis identifies a critical role for ARID2-containing complexes in promoting osteoblast differentiation and supports a view that the PBAF subset of SWI/SNF contributes importantly to maintaining cellular identity and activating tissue-specific gene expression.  相似文献   

18.
19.
SWI/SNF regulates growth control, differentiation and tumor suppression, yet few direct targets of this chromatin-remodeling complex have been identified in mammalian cells. We report that SWI/SNF is required for interferon (IFN)-gamma induction of CIITA, the master regulator of major histocompatibility complex class II expression. Despite the presence of functional STAT1, IRF-1 and USF-1, activators implicated in CIITA expression, IFN-gamma did not induce CIITA in cells lacking BRG1 and hBRM, the ATPase subunits of SWI/SNF. Reconstitution with BRG1, but not an ATPase-deficient version of this protein (K798R), rescued CIITA induction, and enhanced the rate of induction of the IFN-gamma-responsive GBP-1 gene. Not ably, BRG1 inhibited the CIITA promoter in transient transfection assays, underscoring the importance of an appropriate chromosomal environment. Chromatin immunoprecipitation revealed that BRG1 interacts directly with the endogenous CIITA promoter in an IFN-gamma-inducible fashion, while in vivo DNase I footprinting and restriction enzyme accessibility assays showed that chromatin remodeling at this locus requires functional BRG1. These data provide the first link between a cytokine pathway and SWI/SNF, and suggest a novel role for this chromatin-remodeling complex in immune surveillance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号