共查询到20条相似文献,搜索用时 0 毫秒
1.
转化生长因子β1 (TGF-β1) 是参与骨髓间充质干细胞(BMSCs)脂肪定向分化的重要调节因子,其具体的调节机制尚不清楚. 本研究证明,BMSCs在体外分化为脂肪细胞的过程中, TGF-β1的基因表达显著下调,重组TGF-β1能够抑制BMSCs体外脂肪细胞定向分化,其分化的标志蛋白C/EBPβ和αP2的表达水平显著降低. TGF-β1在激活Smad信号通路的同时,还抑制胰岛素(脂肪分化的主要诱导剂)对PI3K/Akt信号通路的激活.加入Smad特异性阻断剂后,C/EBPβ和αP2的诱导表达恢复正常,同时PI3K/Akt信号通路的活化亦得以恢复. 结果提示,TGF-β1可通过Smad信号通路干扰脂肪细胞分化的核心信号通路-PI3K/Akt的活化,从而实现对BMSCs脂肪分化的抑制.该研究结果为肥胖等导致的心血管疾病或Ⅱ型糖尿病等的临床治疗提供有价值的参考. 相似文献
2.
3.
Monika Marędziak Krzysztof Tomaszewski Paulina Polinceusz Daniel Lewandowski Krzysztof Marycz 《Electromagnetic biology and medicine》2017,36(1):45-54
The aim of this work was to investigate the effects of 0.5T static magnetic field (sMF) on the viability and proliferation rate of human adipose-derived mesenchymal stromal stem cells (hASCs) via activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) signaling pathway. In a 7-d culture we examined cell growth kinetic and population doubling time (PDT). We also examined cell morphology and the cellular senescence markers level. Exposure to sMF enhanced the viability of these cells. However, the effect was blocked by treating the cells with LY294002, a P13K inhibitor. We compared this effect by Western Blot analysis of Akt protein expression. We also examined whether the cell response on sMF stimulation is dependent on integrin engagement and we measured integrin gene expression. Our results suggest that stimulation using sMF is a viable method to improve hASC viability. sMF is involved in mechanisms associated with controlling cell proliferative potential signaling events. 相似文献
4.
Xian‐Bao Liu Jian‐An Wang Molly E. Ogle Ling Wei 《Journal of cellular biochemistry》2009,106(5):903-911
Mesenchymal stem cell (MSC) transplantation is a promising approach in the therapy of ischemic heart or CNS diseases; however, the poor viability of MSCs after transplantation critically limits the efficacy of this new strategy. Prolyl hydroxylase inhibition followed by HIF‐1α up‐regulation participates in the regulation of apoptosis and cell survival, which have been shown in cancer cells and neurons. The role of prolyl hydroxylase inhibition by dimethyloxalylglycine (DMOG) in regulation of cell survival has not been investigated in MSCs. In the present investigation with MSCs, apoptosis and cell death induced by serum deprivation were assessed by caspase‐3 activation and trypan blue staining, respectively. The mitochondrial apoptotic pathway and PI3K/Akt cell survival pathway were evaluated. DMOG significantly attenuated apoptosis and cell death of MSCs, stabilized HIF‐1α and induced downstream glucose transport 1 (Glut‐1) synthesis. DMOG treatment reduced mitochondrial cytochrome c release, nuclear translocation of apoptosis inducing factor (AIF), and promoted Akt phosphorylation. A specific PI3K inhibitor, wortmannin, blocked Akt phosphorylation and abrogated the beneficial effect of DMOG. These data suggest that the DMOG protection of MSCs may provide a novel approach to promote cell survival during cell stress. J. Cell. Biochem. 106: 903–911, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
5.
磷脂酰肌醇-3-激酶(phosphatidylinositol 3-kinase,PI3K)/蛋白激酶B(protein kinase B,PKB/Akt)信号通路在细胞生长与存活中起着关键作用,PI3K/Akt通路的过度激活在多种肿瘤中常见。Akt激酶本身以及Akt激酶上游调节分子,例如PTEN和PI3K,在超过50%的人类肿瘤中均有异常变化。因此Akt成为肿瘤预防和肿瘤靶向治疗的热点之一。许多小分子化合物通过不同机制抑制Akt活性,根据小分子抑制剂与激酶的结合部位和化学结构不同,主要分为ATP竞争性抑制剂、Akt变构抑制剂和磷脂酰肌醇类似物抑制剂。本文综述了PI3K/Akt通路与肿瘤的关系和Akt抑制剂的研究现状,为新型抗癌药物的设计研究提供参考。 相似文献
6.
7.
Mesenchymal stem cells (MSCs) are a class of pluripotent cells that can release a large number of exosomes which act as paracrine mediators in tumour-associated microenvironment. However, the role of MSC-derived exosomes in pathogenesis and progression of cancer cells especially osteosarcoma has not been thoroughly clarified until now. In this study, we established a co-culture model for human bone marrow-derived MSCs with osteosarcoma cells, then extraction of exosomes from induced MSCs and study the role of MSC-derived exosomes in the progression of osteosarcoma cell. The aim of this study was to address potential cell biological effects between MSCs and osteosarcoma cells. The results showed that MSC-derived exosomes can significantly promote osteosarcoma cells’ proliferation and invasion. We also found that miR-21-5p was significantly over-expressed in MSCs and MSC-derived exosomes by quantitative real-time polymerase chain reaction (qRT-PCR), compared with human foetal osteoblastic cells hFOB1.19. MSC-derived exosomes transfected with miR-21-5p could significantly enhance the proliferation and invasion of osteosarcoma cells in vitro and in vivo. Bioinformatics analysis and dual-luciferase reporter gene assays validated the targeted relationship between exosomal miR-21-5p and PIK3R1; we further demonstrated that miR-21-5p-abundant exosomes derived human bone marrow MSCs could activate PI3K/Akt/mTOR pathway by suppressing PIK3R1 expression in osteosarcoma cells. In summary, our study provides new insights into the interaction between human bone marrow MSCs and osteosarcoma cells in tumour-associated microenvironment. 相似文献
8.
自噬是一种以胞质内出现双层膜结构包裹长寿命蛋白和细胞器的自噬体为特征的细胞“自我消化”过程,在维持细胞内稳态、发育、肿瘤发生和感染中发挥重要作用。近来,诸多研究表明,自噬作为一把“双刃剑”,对肿瘤的发生发展既有促进作用,也有抑制作用。PI3K/Akt/mTOR通路由PI3激酶(PI3K)、蛋白激酶B(PKB/Akt)和哺乳动物类雷帕霉素靶蛋白(mTOR)3个作用分子组成,是一个中心的调节机构,对肿瘤细胞的生长与增殖有促进作用,同时对自噬进行抑制。本文就PI3K/Akt/mTOR通路与自噬及肿瘤发生发展的关系作一综述。 相似文献
9.
目的:观察雌激素膜受体GPER1对心肌细胞氧化损伤的保护作用,并探讨其通过PI3K/Akt信号通路上调Nrf2,减轻心肌氧化损伤的机制。方法:H_2O_2处理原代培养的新生大鼠心肌细胞建立氧化损伤模型,分为对照组、H_2O_2处理组,GPER1受体激动剂G1预处理+H_2O_2处理组和GPER1拮抗剂G15+G1预处理+H_2O_2处理组,MTT检测细胞活性,Hoechst33342染色和cleaved caspase-3免疫荧光染色观察细胞凋亡,并检测细胞内氧自由基,总抗氧化能力,超氧化物歧化酶(SOD)和丙二醛(MDA)的水平。Western blot测定细胞中p-Akt和细胞核内Nrf2的水平。结果:G1显著抑制H_2O_2导致细胞活性下降和细胞凋亡,并降低细胞内氧自由基水平,提高总抗氧化能力,增加SOD活性,减少MDA含量,但G15能拮抗G1的上述效应。同时G1能增加细胞内Akt磷酸化水平和细胞核内Nrf2的表达,这些效应可被G15和LY-294002阻断。结论:GPER1通过PI3K/Akt信号通路,调节Nrf2的表达,抑制氧化应激导致的心肌细胞损伤。GPER1可以作为开发心肌缺血损伤保护剂的一个潜在靶点。 相似文献
10.
为研究臭椿酮(Ailanthone,AIL)诱导人黑色素瘤A375细胞凋亡的作用及作用机制,以人黑色素瘤A375细胞为研究对象,采用MTT法测定AIL对人黑色素瘤A375细胞生长增殖的抑制作用。用倒置相差显微镜观察AIL对A375细胞形态的影响,用荧光倒置显微镜观察Hoechst33258染色后AIL对A375细胞核的影响,用AnnexinV-FITC/PI双染法检测AIL诱导A375细胞凋亡的作用,用分光光度法检测caspase-3和caspase-9的活性,Westernblot检测p-PI3Kβ(Ser1070),PI3Kβ,p-Akt(Ser473)和Akt蛋白表达水平的变化,接着用PI3K抑制剂LY294002进行干预,进一步验证AIL对PI3K/Akt信号通路及细胞凋亡的影响。实验结果表明,AIL能够明显抑制A375细胞增殖,使A375细胞数目变少、附着力和透光性减弱,AIL能够诱导A375细胞凋亡,使其细胞核染色质发生固缩并呈现高亮,且使A375细胞早期及晚期凋亡率均增加,AIL作用后能够使caspase-3和caspase-9活性增加,AIL能够抑制PI3K和Akt蛋白磷酸化,从而使PI3K/Akt信号通路失活。较AIL单独作用,AIL和LY294002共同作用后对PI3K和Akt蛋白磷酸化的抑制作用增强且诱导凋亡作用增加,进一步说明AIL通过失活PI3K/Akt信号通路来诱导A375细胞凋亡。 相似文献
11.
Na Liu Min Lu Xiao Ming Feng Feng Xia Ma Zhi Hong Fang Xue Mei Tian Qian Ren Lei Zhang Bin Liu Ping Ping Huang Lin Liu Zhong Chao Han 《Journal of cellular biochemistry》2009,106(6):1041-1047
PI3K signaling pathway plays a significant role in embryonic stem cells (ES cells) self‐renewal. Overexpression of Nanog maintains mouse ES cells pluripotency independent of leukemia inhibitory factor (LIF). However, little is known about the effect of PI3K signaling pathway on ES cells with Nanog overexpression. Our experiments aimed to explore the relationship between PI3K signaling pathway and Nanog expression in ES cells. We observed the effect of LY294002, a specific inhibitor of PI3K pathway, on wild‐type J1 cells and Nanog overexpressing (Ex‐Nanog) J1 cells in the presence or absence of LIF. With LY294002 treatment, both of them lost their ES features even in the presence of LIF. But the differentiation induced by LY294002 on Ex‐Nanog J1 cells was slighter lower than that on wild‐type J1 cells. These results indicate that inhibition of PI3K pathway induces mouse ES cells differentiation. Exogenous Nanog sustains mouse ES cells pluripotency independent of LIF, and alleviates the differentiation induced by LY294002. But it is insufficient to totally reverse the differentiation. J. Cell. Biochem. 106: 1041–1047, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
12.
13.
PI3K-Akt pathway: Its functions and alterations in human cancer 总被引:26,自引:0,他引:26
Osaki M Oshimura M Ito H 《Apoptosis : an international journal on programmed cell death》2004,9(6):667-676
Phosphatidylinositol-3-kinase (PI3K) is a lipid kinase and generates phosphatidylinositol-3,4,5-trisphosphate (PI(3, 4, 5)P3). PI(3, 4, 5)P3 is a second messenger essential for the translocation of Akt to the plasma membrane where it is phosphorylated and activated by phosphoinositide-dependent kinase (PDK) 1 and PDK2. Activation of Akt plays a pivotal role in fundamental cellular functions such as cell proliferation and survival by phosphorylating a variety of substrates. In recent years, it has been reported that alterations to the PI3K-Akt signaling pathway are frequent in human cancer. Constitutive activation of the PI3K-Akt pathway occurs due to amplification of the PIK3C gene encoding PI3K or the Akt gene, or as a result of mutations in components of the pathway, for example PTEN (phosphatase and tensin homologue deleted on chromosome 10), which inhibit the activation of Akt. Several small molecules designed to specifically target PI3K-Akt have been developed, and induced cell cycle arrest or apoptosis in human cancer cells in vitro and in vivo . Moreover, the combination of an inhibitor with various cytotoxic agents enhances the anti-tumor efficacy. Therefore, specific inhibition of the activation of Akt may be a valid approach to treating human malignancies and overcoming the resistance of cancer cells to radiation or chemotherapy. 相似文献
14.
李宝成 《基因组学与应用生物学》2020,39(2):789-794
为了考察单一抗阻运动模式和联合运动模式对举重运动员的卫星细胞活化和PI3K/Akt/mTOR信号通路的影响.本研究以30名男性举重运动员为研究对象,将受试者随机分为抗阻运动组和联合运动组,抗阻运动组接受60%最大重复次数(1RM)的负重蹲起训练,联合运动组接受60%1 RM的负重蹲起和卧推训练.运动前和运动后3h立即获... 相似文献
15.
16.
Jie Wang Jingjing Liu Yuying Wang Minghui Lin Wei Tian Lingling Zhou 《Journal of receptor and signal transduction research》2017,37(4):409-415
Objective: It has been proved that lactate-4.25% dialysate could result in peritoneal fibrosis by inducing alternative activation of macrophages in our previous study, but the mechanism of high glucose-induced alternative activation has not been elucidated. This study was, therefore, to investigate the mechanism by high glucose stimuli.Methods: In this study, Raw264.7 (murine macrophage cell line) cells were cultured and stimulated by 4.25% glucose medium, and mannitol medium was used as osmotic pressure control. Cells were harvested at 0?h, 4?h, 8?h, and 12?h to examine the expression of Arg-1, CD206, and p-Akt. After blocking PI3K by LY294002, the expression of Arg-1, CD206, and p-Akt was examined again.Results: The expression of Arg-1 and CD206 was increased in a time-dependent manner induced by high glucose medium. On the contrary, there was mainly no Agr-1 or CD206 expressed in cells cultured in the mannitol medium with the same osmotic pressure. What’s more, Akt was phosphorylated at the eighth hour stimulated by high glucose medium, and LY294002 inhibited the expression of Arg-1 and CD206 by blocking the phosphorylation of Akt.Conclusions: Our study indicated that high glucose rather than high osmotic pressure induced M2 phenotype via PI3K/Akt signaling pathway. 相似文献
17.
Shuai Zhang Yong Sun Zhiqiang Yuan Ying Li Xiaolu Li Zhenyu Gong Yizhi Peng 《BMB reports》2013,46(1):47-52
Intestinal epithelial cell (IEC) apoptosis induced by hypoxia compromise intestinal epithelium barrier function. Both Akt and Hsp90 have cytoprotective function. However, the specific roleof Akt and Hsp90β in IEC apoptosis induced by hypoxia has not been explored. We confirmed that hypoxia-induced apoptosis was reduced by Hsp90β overexpression but enhanced by decreasing Hsp90β expression. Hsp90β overexpression enhanced BAD phosphorylation and thus reduced mitochondrial release of cytochrome C. Reducing Hsp90β expression had opposite effects. The protective effect of Hsp90β against apoptosis was negated by , an Akt inhibitor. Further study showed that Akt phosphorylation was enhanced by Hsp90β, which was not due to the activation of upstream PI3K and PDK1 but because of stabilization of pAkt via direct interaction between Hsp90β and pAkt. These results demonstrate that Hsp90β may play a significant role in protecting IECs from hypoxia-induced apoptosis via stabilizing pAkt to phosphorylateBAD and reduce cytochrome C release. [BMB Reports 2013;46(1): 47-52] LY294002相似文献
18.
19.
转化生长因子-β(TGF-β)超家族分子通过跨膜受体和胞浆内信号转导分子Smad进行信号转导,调节细胞的增殖、分化和凋亡。许多生长因子和激素通过其受体激活磷脂酰肌醇3-激酶(PI3K),PI3K可以使肌醇环上的3位羟基磷酸化,磷酸化的肌醇脂可招募和激活许多信号通路分子,促进细胞增殖、细胞迁移和细胞存活。近几年来的研究表明这两条信号通路通过多水平的相互作用共同调节细胞增殖、分化及凋亡,在维持组织稳态的过程中发挥重要的作用。 相似文献
20.
Bin Zhang Qianqian Dai Xuguang Jin Dongmei Liang Xiaojie Li Haiyan Lu Yu Liu Jingjing Ding Qian Gao Yanting Wen 《Journal of cellular physiology》2019,234(11):19911-19920
Sarcoidosis is a systemic granulomatous disease associated with Th1/ regulatory T cells (Treg) paradigm. PI3K/Akt signaling, critical for maintaining Treg's homeostasis, is aberrantly activated in sarcoidosis patients. Here we tested the role of the PI3K inhibitors, LY294002 and BKM120, in immune modulation in experimental pulmonary sarcoidosis, concerning Th1/Th17/Treg immune profile detected by fluorescence-activated cell sorting analysis or quantitative polymerase chain reaction, as well as the effect on Treg's suppressive functions. Our investigation showed abnormal activation of PI3K/Akt signaling both in lung and Treg in pulmonary sarcoidosis, along with decreased frequency and damaged function of Treg. Blockage of PI3K suppressed this signaling in Treg, rebalanced Th1/Treg, inhibited the production of inflammatory cytokines, and enhanced Treg's function. These results demonstrate the key role of the PI3K/Akt signaling in regulating Th1/Th2 rebalances and indicates that PI3K/Akt signaling is critical for the optimal Treg responses in pulmonary sarcoidosis. Thus, PI3K inhibitors have potential for therapeutic translation, and can be candidate for add-on drugs to treat pulmonary sarcoidosis. 相似文献