首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S Li  J He  S Li  G Cao  S Tang  Q Tong  HC Joshi 《PloS one》2012,7(7):e40076
Neuroblastoma is the most common extracranial solid tumor of childhood. It accounts for 15% of pediatric cancer deaths. Chemotherapy is the mainstay of treatment in children with advanced neuroblastoma. Noscapine, a nontoxic natural compound, can trigger apoptosis in many cancer types. We now show that p53 is dispensable for Noscapine-induced cell death in neuroblastoma cell lines, proapoptotic response to this promising chemopreventive agent is mediated by suppression of survivin protein expression. The Noscapine treatment increased levels of total and Ser(15)-phosphorylated p53 protein in SK-SY5Y cells, but the proapoptotic response to this agent was maintained even after knockdown of the p53 protein level. Exposure of SK-SY5Y and LA1-5S cells to Noscapine resulted in a marked decrease in protein and mRNA level of survivin as early as 12 hours after treatment. Ectopic expression of survivin conferred statistically significant protection against Noscapine-mediated cytoplasmic histone-associated apoptotic DNA fragmentation. Also, the Noscapine-induced apoptosis was modestly but statistically significantly augmented by RNA interference of survivin in both cell lines. Furthermore, Noscapine-induced apoptotic cell death was associated with activation of caspase-3 and cleavage of PARP. In conclusion, the present study provides novel insight into the molecular circuitry of Noscapine-induced apoptosis to indicate suppression of survivin expression as a critical mediator of this process.  相似文献   

2.

Background

Survivin is an inhibitor of apoptosis and its over expression is associated with poor prognosis in several malignancies. While several studies have analyzed survivin expression in esophageal squamous cell carcinoma, few have focused on esophageal adenocarcinoma (EAC) and/or cancer-adjacent squamous epithelium (CASE). The purpose of this study was 1) to determine the degree of survivin up regulation in samples of EAC and CASE, 2) to evaluate if survivin expression in EAC and CASE correlates with recurrence and/or death, and 3) to examine the effect of survivin inhibition on apoptosis in EAC cells.

Methods

Fresh frozen samples of EAC and CASE from the same patient were used for qRT-PCR and Western blot analysis, and formalin-fixed, paraffin-embedded tissue was used for immunohistochemistry. EAC cell lines, OE19 and OE33, were transfected with small interfering RNAs (siRNAs) to knockdown survivin expression. This was confirmed by qRT-PCR for survivin expression and Western blot analysis of cleaved PARP, cleaved caspase 3 and survivin. Survivin expression data was correlated with clinical outcome.

Results

Survivin expression was significantly higher in EAC tumor samples compared to the CASE from the same patient. Patients with high expression of survivin in EAC tumor had an increased risk of death. Survivin expression was also noted in CASE and correlated with increased risk of distant recurrence. Cell line evaluation demonstrated that inhibition of survivin resulted in an increase in apoptosis.

Conclusion

Higher expression of survivin in tumor tissue was associated with increased risk of death; while survivin expression in CASE was a superior predictor of recurrence. Inhibition of survivin in EAC cell lines further showed increased apoptosis, supporting the potential benefits of therapeutic strategies targeted to this marker.  相似文献   

3.
4.
5.
Oxaliplatin, a platinum derivative cancer drug, has been used for treating human colorectal cancers. Survivin has been proposed as a cancer target, which highly expressed in most cancer cells but not normal adult cells. In this study, we investigated the regulation of survivin expression by exposure to oxaliplatin in human colon cancer cells. Oxaliplatin (3–9 μM for 24 h) markedly induced cytotoxicity, proliferation inhibition and apoptosis in the human RKO colon cancer cells. The survivin protein expression of RKO cells is dramatically reduced by oxaliplatin; however, the survivin gene expression is slightly altered. The survivin blockage of oxaliplatin elevated caspase-3 activation and apoptosis in RKO cells. Over-expression of survivin proteins by transfection with a survivin-expressed vector resisted the oxaliplatin-induced cancer cell death. Meantime, oxaliplatin elicited the phosphorylation of p38 mitogen-activated protein (MAP) kinase. SB202190, a specific p38 MAP kinase inhibitor, restored the survivin protein level and attenuated oxaliplatin-induced cancer cell death. In addition, oxaliplatin increased the levels of phospho-p53 (Ser-15) and total p53 proteins. Inhibition of p53 expression by a specific p53 inhibitor pifithrin-α reduced the phosphorylated p38 MAP kinase and active caspase-3 proteins in the oxaliplatin-exposed RKO cells. In contrast, SB202190 did not alter the oxaliplatin-induced p53 protein level. Furthermore, treatment with a specific proteasome inhibitor MG132 restored survivin protein level in the oxaliplatin-treated colon cancer cells. Taken together, our results demonstrate for the first time that survivin is down-regulated by p38 MAP kinase and proteasome degradation pathway after treatment with oxaliplatin in the human colon cancer cells.  相似文献   

6.
Survivin inhibits anti-growth effect of p53 activated by aurora B   总被引:5,自引:0,他引:5  
Genomic instability and apoptosis evasion are hallmarks of cancer, but the molecular mechanisms governing these processes remain elusive. Here, we found that survivin, a member of the apoptosis-inhibiting gene family, and aurora B kinase, a chromosomal passenger protein, were co-overexpressed in the various glioblastoma cell lines and tumors. Notably, exogenous introduction of the aurora B in human BJ cells was shown to decrease cell growth and increase the senescence-associated beta-galactosidase activity by activation of p53 tumor suppressor. However, aurora B overexpression failed to inhibit cell proliferation in BJ and U87MG cells transduced with dominant-negative p53 as well as in p53(-/-) mouse astrocytes. Aurora B was shown to increase centrosome amplification in the p53(-/-) astrocytes. Survivin was shown to induce anchorage-independent growth and inhibit anti-proliferation and drug-sensitive apoptosis caused by aurora B. Overexpression of both survivin and aurora B further accelerated the proliferation of BJ cells. Taken together, the present study indicates that survivin should accelerate tumorigenesis by inhibiting the anti-proliferative effect of p53 tumor suppressor that is activated by aurora B in normal and glioblastoma cells containing intact p53.  相似文献   

7.
Hsp60 regulation of tumor cell apoptosis   总被引:2,自引:0,他引:2  
Molecular chaperones may promote cell survival, but how this process is regulated, especially in cancer, is not well understood. Using high throughput proteomics screening, we identified the cell cycle regulator and apoptosis inhibitor survivin as a novel protein associated with the molecular chaperone Hsp60. Acute ablation of Hsp60 by small interfering RNA destabilizes the mitochondrial pool of survivin, induces mitochondrial dysfunction, and activates caspase-dependent apoptosis. This response involves disruption of an Hsp60-p53 complex, which results in p53 stabilization, increased expression of pro-apoptotic Bax, and Bax-dependent apoptosis. In vivo, Hsp60 is abundantly expressed in primary human tumors, as compared with matched normal tissues, and small interfering RNA ablation of Hsp60 in normal cells is well tolerated and does not cause apoptosis. Therefore, Hsp60 orchestrates a broad cell survival program centered on stabilization of mitochondrial survivin and restraining of p53 function, and this process is selectively exploited in cancer. Hsp60 inhibitors may function as attractive anticancer agents by differentially inducing apoptosis in tumor cells.  相似文献   

8.
9.
TNF-related apoptosis-inducing ligand (TRAIL) shows promise as a cancer treatment, but acquired tumor resistance to TRAIL is a roadblock. Here we investigated whether nimbolide, a limonoid, could sensitize human colon cancer cells to TRAIL. As indicated by assays that measure esterase activity, sub-G(1) fractions, mitochondrial activity, and activation of caspases, nimbolide potentiated the effect of TRAIL. This limonoid also enhanced expression of death receptors (DRs) DR5 and DR4 in cancer cells. Gene silencing of the receptors reduced the effect of limonoid on TRAIL-induced apoptosis. Using pharmacological inhibitors, we found that activation of ERK and p38 MAPK was required for DR up-regulation by nimbolide. Gene silencing of ERK abolished the enhancement of TRAIL-induced apoptosis. Moreover, our studies indicate that the limonoid induced reactive oxygen species production, which was required for ERK activation, up-regulation of DRs, and sensitization to TRAIL; these effects were mimicked by H(2)O(2). In addition, nimbolide down-regulated cell survival proteins, including I-FLICE, cIAP-1, cIAP-2, Bcl-2, Bcl-xL, survivin, and X-linked inhibitor of apoptosis protein, and up-regulated the pro-apoptotic proteins p53 and Bax. Interestingly, p53 and Bax up-regulation by nimbolide was required for sensitization to TRAIL but not for DR up-regulation. Overall, our results indicate that nimbolide can sensitize colon cancer cells to TRAIL-induced apoptosis through three distinct mechanisms: reactive oxygen species- and ERK-mediated up-regulation of DR5 and DR4, down-regulation of cell survival proteins, and up-regulation of p53 and Bax.  相似文献   

10.
There is increasing evidence that statins, which are widely used in lowering serum cholesterol and the incidence of cardiovascular diseases, also exhibits anti‐tumour properties. The underlying mechanisms by which statins‐induced cancer cell death, however, remain incompletely understood. In this study, we explored the anti‐tumour mechanisms of a lipophilic statin, lovastatin, in MCF‐7 breast cancer cells. Lovastatin inhibited cell proliferation and induced cell apoptosis. Lovastatin caused p21 elevation while reduced cyclin D1 and survivin levels. Lovastatin also increased p53 phosphorylation, acetylation and its reporter activities. Results from chromatin immunoprecipitation analysis showed that p53 binding to the survivin promoter region was increased, while Sp1 binding to the region was decreased, in MCF‐7 cells after lovastatin exposure. These actions were associated with liver kinase B1 (LKB1), AMP‐activated protein kinase (AMPK) and p38 mitogen‐activated protein kinase (p38MAPK) activation. Lovastatin's enhancing effects on p53 activation, p21 elevation and survivin reduction were significantly reduced in the presence of p38MAPK signalling inhibitor. Furthermore, LKB1‐AMPK signalling blockade abrogated lovastatin‐induced p38MAPK and p53 phosphorylation. Together these results suggest that lovastatin may activate LKB1‐AMPK‐p38MAPK‐p53‐survivin cascade to cause MCF‐7 cell death. The present study establishes, at least in part, the signalling cascade by which lovastatin induces breast cancer cell death.  相似文献   

11.
PI3K activation is commonly observed in many human cancer cells. Survivin expression is elevated in cancer cells, and induced by some growth factors through PI3K activation. However, it is not clear whether PI3K activation is sufficient to induce survivin expression. To investigate the role of PI3K pathway in the regulation of survivin, we expressed an active form of PI3K, v-P3k in chicken embryonic fibroblast cells (CEF), and found that overexpression of PI3K-induced survivin mRNA expression. Forced expression of wild-type but not mutant tumor suppressor PTEN in CEF decreased survivin mRNA levels. PI3K regulates survivin expression through Akt activation. To further investigate downstream target of PI3K and Akt in regulating the expression of survivin mRNA, we found that PI3K and Akt-induced p70S6K1 activation and that overexpression of p70S6K1 alone was sufficient to induce survivin expression. The treatment of CEF cells by rapamycin decreased the survivin mRNA expression. This result demonstrated that p70S6K1 is an important target downstream of PI3K and Akt in regulating suvivin mRNA expression. The knockdown of survivin mRNA expression by its specific siRNA induced apoptosis of cancer cells when the cells were treated with LY294002 or taxol. Taken together, these results demonstrated that PI3K/Akt/p70S6K1 pathway is essential for regulating survivin mRNA expression.  相似文献   

12.
Since Protein A (PA) of Staphylococcus aureus has been documented to have both antitumor and immunostimulatory properties, we attempted to determine whether PA-induced tumor cell death was effected through the immune system of the host, and analyze the mechanisms of such anti-tumor activity. For in vivo studies, Ehrlich's ascites carcinoma (EAC) cells were inoculated into the peritoneal cavity of Swiss albino mice. PA (1 micro g/20 g body weight) was injected biweekly for 2 weeks. To determine the role of immunomodulators in PA-induced tumor cell death, EAC were co-cultured with PA-primed splenic cells or with the spent medium of the same. Our results indicated a "two-step" mechanism of the induction of apoptosis in tumor cells, by PA, i.e. (1) activation of the immune system of the host to release different apoptogenic factors like tumor necrosis factor-alpha (TNF-alpha) and nitric oxide (NO); and (2) induction of EAC apoptosis by these soluble immune mediators through the up-regulation of pro-apoptotic factors (p53 and Bax) and down-regulation of anti-apoptotic factor (Bcl-2), resulting in the activation of caspase-3. The present observations provide additional findings on an approach to cancer immunotherapy that causes apoptogenic insult to cancer cells.  相似文献   

13.
Bacterial toxins have emerged as promising agents in cancer treatment strategy. Hemagglutinin (HAP) protease secreted by Vibrio cholerae induced apoptosis in breast cancer cells and regresses tumor growth in mice model. The success of novel cancer therapies depends on their selectivity for cancer cells with limited toxicity for normal tissues. Increased expression of Protease Activated Receptor-1 (PAR-1) has been reported in different malignant cells. In this study we report that HAP induced activation and over expression of PAR-1 in breast cancer cells (EAC). Immunoprecipitation studies have shown that HAP specifically binds with PAR-1. HAP mediated activation of PAR-1 caused nuclear translocation of p50–p65 and the phosphorylation of p38 which triggered the activation of NFκB and MAP kinase signaling pathways. These signaling pathways enhanced the cellular ROS level in malignant cells that induced the intrinsic pathway of cell apoptosis. PAR-1 mediated apoptosis by HAP of malignant breast cells without effecting normal healthy cells in the same environment makes it a good therapeutic agent for treatment of cancer.  相似文献   

14.
15.
16.
Quercetin, a widely distributed bioflavonoid, has been shown to induce growth inhibition in a variety of human cancer cells. However, the regulation of survivin and Bcl‐2 on the quercetin‐induced cell‐growth inhibition and apoptosis in cancer cells remains unclear. In the present study, we report that quercetin can inhibit proliferation and induce apoptosis in HepG2 cells in dose‐ and time‐dependent manner. Hoechst 33258 and acridine orange/ethidium bromide (AO/EB) staining showed that HepG2 cells underwent the typical morphologic changes of apoptosis characterized by nuclear shrinkage, chromatin condensation, or fragmentation after exposure to quercetin. Cell‐cycle analysis reveals a significant increase of the proportion of cells in G0/G1 phase. We also demonstrate that the levels of survivin and Bcl‐2 protein expression in HepG2 cells decreased concurrently, and the levels of p53 protein increased significantly after treatment with quercetin by immunocytochemistry analysis. Relative activity of caspase‐3 and caspase‐9 increased significantly. These data clearly indicate that quercetin‐induced apoptosis is associated with caspase activation, and the levels of survivin and Bcl‐2. Our results indicate that the expression of survivin may be associated with Bcl‐2 expression, and the inhibition expression of survivin, in conjunction with Bcl‐2, might cause more pronounced apoptotic effects. Together, concurrent down‐regulated survivin and Bcl‐2 play an important role in HepG2 cell apoptosis induced by quercetin.  相似文献   

17.
Quercetin, a ubiquitous bioactive plant flavonoid, has been shown to inhibit the proliferation of cancer cells. However, the regulation of survivin and p53 on the quercetin-induced cell growth inhibition and apoptosis in cancer cells remains unclear. In this study, we investigated the roles of survivin and p53 in the quercetin-treated human lung carcinoma cells. Quercetin (20-80 mum for 24 h) induced the cytotoxicity and apoptosis in both A549 and H1299 lung carcinoma cells in a concentration-dependent manner. Additionally, quercetin inhibited the cell growth, increased the fractions of G(2)/M phase, and raised the levels of cyclin B1 and phospho-cdc2 (threonine 161) proteins. Moreover, quercetin induced abnormal chromosome segregation in H1299 cells. The survivin proteins were highly expressed in mitotic phase and were located on the midbody of cytokinesis; however, the survivin proteins were increased and concentrated on the nuclei following quercetin treatment in the lung carcinoma cells. Transfection of a survivin antisense oligodeoxynucleotide enhanced the quercetin-induced cell growth inhibition and cytotoxicity. Subsequently, quercetin increased the levels of total p53 (DO-1), phospho-p53 (serine 15), and p21 proteins, which were translocated to the nuclei in A549 cells. Treatment with a specific p53 inhibitor, pifithrin-alpha, or transfection of a p53 antisense oligodeoxynucleotide enhanced the cytotoxicity of the quercetin-treated cells. Furthermore, transfection of a small interfering RNA of p21 enhanced the quercetin-induced cell death in A549 cells. Together, our results suggest that survivin can reduce the cell growth inhibition and apoptosis, and p53 elevates the p21 level, which may attenuate the cell death in the quercetin-treated human lung carcinoma cells.  相似文献   

18.
Non-steroidal anti-inflammatory drugs are well known to induce apoptosis of cancer cells independent of their ability to inhibit cyclooxygenase-2, but the molecular mechanism for this effect has not yet been fully elucidated. The purpose of this study was to elucidate the potential signaling components underlying sulindac-induced apoptosis in human multiple myeloma (MM) cells. We found that sulindac induces apoptosis by promoting ROS generation, accompanied by opening of mitochondrial permeability transition pores, release of cytochrome c and apoptosis inducing factor from mitochondria, followed by caspase activation. Bcl-2 cleavage and down-regulation of the inhibitor of apoptosis proteins (IAPs) family including cIAP-1/2, XIAP, and survivin, occurred downstream of ROS production during sulindac-induced apoptosis. Forced expression of survivin and Bcl-2 blocked sulindac-induced apoptosis. Most importantly, sulindac-derived ROS activated p38 mitogen-activated protein kinase and p53. SB203580, a p38 mitogen-activated protein kinase inhibitor, and RNA inhibition of p53 inhibited the sulindac-induced apoptosis. Furthermore, p53, Bax, and Bak accumulated in mitochondria during sulindac-induced apoptosis. All of these events were significantly suppressed by SB203580. Our results demonstrate a novel mechanism of sulindac-induced apoptosis in human MM cells, namely, accumulation of p53, Bax, and Bak in mitochondria mediated by p38 MAPK activation downstream of ROS production.  相似文献   

19.
The p53 tumor suppressor orchestrates alternative stress responses including cell cycle arrest and apoptosis, but the mechanisms defining cell fate upon p53 activation are poorly understood. Several small-molecule activators of p53 have been developed, including Nutlin-3, but their therapeutic potential is limited by the fact that they induce reversible cell cycle arrest in most cancer cell types. We report here the results of a genome-wide short hairpin RNA screen for genes that are lethal in combination with p53 activation by Nutlin-3, which showed that the ATM and MET kinases govern cell fate choice upon p53 activation. Genetic or pharmacological interference with ATM or MET activity converts the cellular response from cell cycle arrest into apoptosis in diverse cancer cell types without affecting expression of key p53 target genes. ATM and MET inhibitors also enable Nutlin-3 to kill tumor spheroids. These results identify new pathways controlling the cellular response to p53 activation and aid in the design of p53-based therapies.  相似文献   

20.
Survivin is a member of the Inhibitor of Apoptosis gene family that has been implicated in cell division and suppression of apoptosis. Here, we show that preferential ablation of the nuclear pool of survivin by RNA interference produces a mitotic arrest followed by re-entry into the cell cycle and polyploidy. Survivin ablation causes multiple centrosomal defects, aberrant multipolar spindle formation, and chromatin missegregation, and these phenotypes are exacerbated by loss of the cell cycle regulator, p21(Waf1/Cip1) in p21(-/-) cells. The mitotic checkpoint activated by loss of survivin is mediated by induction of p53 and associated with increased expression of its downstream target, p21(Waf1/Cip1). Accordingly, p53(-/-) cells exhibit reduced mitotic arrest and enhanced polyploidy upon survivin ablation as compared with their p53(+/+) counterparts. Partial reduction of the cytosolic pool of survivin by RNA interference sensitizes cells to ultraviolet B-mediated apoptosis and results in enhanced caspase-9 proteolytic cleavage, whereas complete ablation of cytosolic survivin causes loss of mitochondrial membrane potential and spontaneous apoptosis. These data demonstrate that survivin has separable checkpoint functions at multiple phases of mitosis and in the control of mitochondrial-dependent apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号