首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的: 探讨miRNA-130a-3p对脂多糖(LPS)诱导的心肌细胞自噬与凋亡的影响及分子机制。方法: H9C2心肌细胞随机分为5组,即正常对照组,LPS模型组,miRNA阴性对照组(miRNA-negative control组),miRNA-130a-3p mimics组(过表达miRNA-130a-3p),miRNA-130a-3p mimics+LY294002组(过表达miRNA-130a-3p + PI3K抑制)。LPS模型组即终浓度为10 μg/ml的LPS诱导24 h,miRNA阴性对照组与miRNA-130a-3p mimics组是利用lipo3000将阴性对照miRNA及miRNA-130a-3p mimics转染至H9C2细胞,培养24 h后,再将LPS加入培养基中培养24 h。miRNA-130a-3p mimics + LY294002组是利用lipo3000将miRNA-130a-3p mimics转染至H9C2细胞,同时在培养基中加入10 μmol/L(终浓度)的LY294002,培养24 h后,再将浓度为10 μg/ml的LPS加入培养基中培养24 h。所有实验均重复5次以上。利用RT-qPCR检测细胞中miRNA-130a-3p mRNA的表达水平,利用CCK-8实验检测细胞活性,利用ELISA实验检测细胞培养液中肿瘤坏死因子-α(TNF-α),白细胞介素-6(IL-6),白细胞介素-1β (IL-1β)的含量,利用比色法检测细胞培养液中超氧化物歧化酶(SOD)、乳酸脱氢酶(LDH)的含量;利用Western blot检测细胞中p-PI3K蛋白,p-AKT蛋白,Bax蛋白,Bcl-2蛋白,cleaved-caspase-3蛋白,LC3蛋白,p62蛋白的表达水平。结果: 结果显示,与正常组相比较,LPS模型细胞中miRNA-130a-3p mRNA水平,p-PI3K蛋白与p-AKT蛋白的水平显著低于正常对照组(P<0.01);与LPS组相比较,miRNA-130a-3p mimics组细胞中p-PI3K,p-AKT蛋白的表达显著升高(P<0.01,P<0.05);与正常对照组相比较,LPS组细胞活性显著降低,细胞培养液中TNF-α,IL-6,IL-1β及 LDH的含量显著升高(P<0.01), SOD的含量显著降低(P<0.01),细胞中Bax蛋白,cleaved caspase-3蛋白,p62蛋白的表达显著升高(P<0.01),Bcl-2蛋白的表达和LC3II/I的比率显著降低(P<0.01);与LPS组相比较,miRNA-130a-3p mimics可提高细胞活性,降低细胞培养液中TNF-α,IL-6,IL-1β及LDH的含量(P<0.01,P<0.05),提高SOD的含量(P<0.05),降低细胞中Bax蛋白,cleaved caspase-3蛋白,p62蛋白的表达(P<0.01),促进Bcl-2蛋白的表达(P<0.01),提高LC3II/I的比率(P<0.05);与miRNA-130a-3p mimics组相比较,miRNA-130a-3p mimics+LY294002组,可部分逆转miRNA-130a-3p mimics对细胞的作用。结论: 过表达miRNA-130a-3p可部分通过激活PI3K/AKT信号通路促进细胞的自噬与抑制细胞凋亡,减轻LPS诱导的心肌细胞损伤。  相似文献   

2.
Liver fibrosis is the repair process of abnormal connective tissue hyperplasia after liver damage caused by different causes. Inhibition of PI3K/Akt signalling pathway can reduce the deposition of extracellular matrix, inhibit the proliferation of hepatic stellate cells (HSCs), and promote its apoptosis to achieve the purpose of therapy. This study aimed to investigate the effect of Idelalisib (PI3K inhibitor) on carbon tetrachloride (CCl4)-induced liver fibrosis in mice. We used CCl4-induced liver fibrosis mouse model in vivo and TGF-β1-stimulated HSCs to evaluate the antifibrosis activity of Idelalisib. In vivo, Idelalisib significantly alleviated CCl4-induced liver damage, collagen deposition, and hydroxyproline accumulation in mice. Immunohistochemistry and Western blot results showed that Idelalisib could significantly inhibit the expressions of COL1 and α-SMA in a concentration-dependent manner. In cell experiments, Idelalisib significantly inhibited the expressions of COL1, SMA, and p-Smad3 in TGF-β-induced HSCs, thereby inhibiting HSC activation. Flow cytometry and Western blot results showed that Idelalisib significantly promoted TGFβ-induced apoptosis of HSCs after 48 h of administration, but had no significant effect after 24 h. Idelalisib promoted the apoptosis of activated HSCs by inhibiting the PI3K/Akt/FOXO3 signalling pathway. To further explore the mechanism by which Idelalisib inhibited PI3K, we predicted the miRNA targeting PI3K through the database and crossed it with the down-regulated miRNA reported in liver fibrosis mice in the past five years. Finally, we identified miR-124-3p and miR-143-3p. We then demonstrated that Idelalisib significantly promoted miR-124-3p and miR-142-3p in vitro and in vivo. Dual-luciferase report analysis showed that Idelalisib significantly inhibited luciferase activity but had no significant effect on the luc-MUT transfection assay. Finally, we demonstrated that Idelalisib reversed the effects of miR-124-3p inhibitor on the PI3K/Akt/FOXO3 asterisk pathway and caspase-3. Idelalisib has potential as a candidate drug for alleviating liver fibrosis.  相似文献   

3.
This study aimed to investigate the role of miR‐138 in human coronary artery endothelial cell (HCAEC) injury and inflammatory response and the involvement of the PI3K/Akt/eNOS signalling pathway. Oxidized low‐density lipoprotein (OX‐LDL)‐induced HCAEC injury models were established and assigned to blank, miR‐138 mimic, miR‐138 inhibitor, LY294002 (an inhibitor of the PI3K/Akt/eNOS pathway), miR‐138 inhibitor + LY294002 and negative control (NC) groups. qRT‐PCR and Western blotting were performed to detect the miR‐138, PI3K, Akt and eNOS levels and the protein expressions of PI3K, Akt, eNOS, p‐Akt, p‐eNOS, Bcl‐2, Bax and caspase‐3. ELISAs were employed to measure the expressions of TNF‐α, IL‐4, IL‐6, IL‐8, IL‐10 and nitric oxide (NO) and the activities of lactate dehydrogenase (LDH) and eNOS. MTT and flow cytometry were performed to assess the proliferation and apoptosis of HCAECs. Compared to the blank group, PI3K, Akt and eNOS were down‐regulated in the miR‐138 mimic and LY294002 groups but were up‐regulated in the miR‐138 inhibitor group. The miR‐138 mimic and LY294002 groups showed decreased concentrations of TNF‐α, IL‐6, IL‐8 and NO and reduced activities of LDH and eNOS, while opposite trends were observed in the miR‐138 inhibitor group. The concentrations of IL‐4 and IL‐10 increased in the miR‐138 mimic and LY294002 groups but decreased in the miR‐138 inhibitor group. The miR‐138 mimic and LY294002 groups had significantly decreased cell proliferation and increased cell apoptosis compared to the blank group. These findings indicate that up‐regulation of miR‐138 alleviates HCAEC injury and inflammatory response by inhibiting the PI3K/Akt/eNOS signalling pathway.  相似文献   

4.
Obesity, which has unknown pathogenesis, can increase the frequency and seriousness of acute myocardial infarction (AMI). This study evaluated effect of Huayu Qutan Recipe (HQR) pretreatment on myocardial apoptosis induced by AMI by regulating mitochondrial function via PI3K/Akt/Bad pathway in rats with obesity. For in vivo experiments, 60 male rats were randomly divided into 6 groups: sham group, AMI group, AMI (obese) group, 4.5, 9.0 and 18.0 g/kg/d HQR groups. The models fed on HQR with different concentrations for 2 weeks before AMI. For in vitro experiments, the cardiomyocytes line (H9c2) was used. Cells were pretreated with palmitic acid (PA) for 24 h, then to build hypoxia model followed by HQR‐containing serum for 24 h. Related indicators were also detected. In vivo, HQR can lessen pathohistological damage and apoptosis after AMI. In addition, HQR improves blood fat levels, cardiac function, inflammatory factor, the balance of oxidation and antioxidation, as well as lessen infarction in rats with obesity after AMI. Meanwhile, HQR can diminish myocardial cell death by improving mitochondrial function via PI3K/Akt/Bad pathway activation. In vitro, HQR inhibited H9c2 cells apoptosis, improved mitochondrial function and activated the PI3K/Akt/Bad pathway, but effects can be peripeteiad by LY294002. Myocardial mitochondrial dysfunction occurs following AMI and can lead to myocardial apoptosis, which can be aggravated by obesity. HQR can relieve myocardial apoptosis by improving mitochondrial function via the PI3K/Akt/Bad pathway in rats with obesity.  相似文献   

5.
Vitamin D deficiency is associated with acute myocardial infarction (AMI); thus we aimed to explore improvement effects of 1,25-dihydroxyvitamin D3 (VD3) on the AMI and its potential mechanism. AMI models were constructed using male C57/BL6J mice and randomly treated with normal saline or VD3, using sham rats as control. Heart functions, myocardial damage, apoptosis, and inflammation were evaluated. Cardiomyocytes isolated from 3-day-old suckling mice were used for in vitro verification. After VD3 treatment, AMI-induced cardiac dysfunction was reversed with better cardiac function parameters. VD3 treatment reduced inflammatory cell infiltration and myocardial infarction area accompanied by the reduction of inflammatory factors and myocardial infarction markers compared with the AMI group. VD3 treatment obviously alleviated AMI-induced myocardial apoptosis, along with Bcl-2 upregulation and downregulation of caspase-3, caspase-9, and Bax. Both in vivo and in vitro experiments revealed that VD3 enhanced the expression of LC3II and Beclin-1 and decreased soluble p62. Furthermore, VD3 enhanced the AMI-caused inhibition of PI3K, p-AKT, and p-mTOR expression, which was conversely reversed by the addition of 3-methyladenine in vitro. The study highlights the improvement effects of VD3 on cardiac functions. We proposed a potential mechanism that VD3 protects against myocardial damage, inflammation, and apoptosis by promoting autophagy through PI3K/AKT/mTOR pathway.  相似文献   

6.
目的:探讨脂联素(ADP)后处理对大鼠心肌缺血/再灌注损伤(MIRI)的影响以及脂联素/磷脂酰肌醇-3激酶/蛋白激酶B (ADP/PI3K/Akt)通路的作用。方法:SD大鼠麻醉后气管插管连接呼吸机,开胸暴露心肌,在左心耳和肺动脉圆锥之间用带线圆针对冠脉左前降支(LAD)穿线,LAD结扎断流30 min后松线再灌注120 min,建立大鼠MIRI模型。大鼠随机分为以下5组(n=12):①假手术组(Sham组):LAD仅穿线不结扎;② MIRI组;③ADP后处理组(ADP组):LAD断流10 min时静注ADP继续断流20 min,然后再灌注120 min;④ADP+LY294002组:LAD断流10 min时静注ADP和LY294002,其余同ADP组;⑤LY294002组:LAD断流10 min时静注LY294002,其余同ADP组。各组取血检测LDH和cTnI含量,取左心室心肌测定PI3k、Akt、p-Akt、ADPmRNA、ADPR1mRNA和PI3KmRNA表达。结果:与Sham组比较,MIRI组血浆LDH和cTnI均明显升高(P<0.05);和MIRI组相比,ADP组心肌损伤指标明显下降(P<0.05),而应用LY294002的两组心肌损伤比ADP组加重(P<0.05)。ADP组心肌PI3K、p-Akt、ADPmRNA、ADPR1mRNA和PI3kmRNA表达比MIRI组升高(P<0.05),应用LY294002两组上述5个指标比MIRI组降低(P<0.05)。结论:ADP后处理对大鼠MIRI有保护作用,ADP/PI3K/Akt通路参与了以上作用。  相似文献   

7.
To study the effect of miRNA-200b on hepatic fibrosis induced by CCl4 in mice. The C59BL/6 mice were randomly divided into three groups (normal control [NC], CCLR model [Model], and CCl 4 + miRNA-200b [miRNA]). The hepatic fibrosis was induced by CCl 4 injected subcutaneously twice per week in Model and miRNA groups. After 6 weeks building model, the mice of miRNA group were injected the miRNA-200b from caudal vein twice per week. The mice of Model and miRNA groups were continuously fed for 3 weeks. The IL-1β, IL-6, and TNF-α concentrations of serum were measured by enzyme-linked immunosorbent assay. The hepatic tissues of difference groups were observed by hematoxylin and eosin (H&E) staining, sirius red staining, Masson staining, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay and measured toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) proteins expressions by western blot assay. The correlation between miRNA-200b and TLR4 were analyzed by dual luciferase target assay. Compared with NC group, the interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) concentrations of Model group were significantly upregulated (P < 0.05, respectively). With miRNA-200b overexpression, the IL-1β, IL-6, and TNF-α concentrations were significantly suppressed (P < 0.05, respectively). The pathologies were improved by H&E staining, sirius red staining, and Masson staining; meanwhile, the hepatic cell apoptosis rate was significantly suppressed (P < 0.05). The TLR4 and NF-κB protein expressions of miRNA group were significantly suppressed compared with the Model group (P < 0.05, respectively). By dual luciferase target assay, the TLR4 was a target gene of miRNA-200b. The miRNA-200b upregulation improved hepatic fibrosis induced by CCl 4 via regulation of TLR4 in vivo.  相似文献   

8.
Abstract

To investigate the effect of microRNA 21 (miR-21) on hepatic stellate cells (HSCs) proliferation and apoptosis, and further to study its potential mechanisms. LX-2 cells were divided into miR-21 mimic group (Mimic), miR-21 mimic negative control group (NM), miR-21 inhibitor group (Inhibitor), miR-21 inhibitor negative control group (NC), and blank control group (Control). The cell proliferation was detected by CCK-8 assay and the cell migration and invasion were detected by scratch and transwell assay. Cell cycle and apoptosis were detected by flow cytometry. The levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α, and transforming growth factor (TGF)-β1 were detected by enzyme-linked immunosorbent assay (ELISA). Proliferation, apoptosis, and phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway related genes and proteins were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot, respectively. The cells proliferation, migration, and invasion were promoted in Mimic group. The levels of IL-6, TNF-α, and TGF-β1 were increased after miR-21 administration. The expression of α-smooth muscle actin (SMA) and collagen 1 (Colla1) were increased, while Bax/B-cell lymphoma (Bcl)-2 ratio and programed cell death 4 (PDCD4) were reduced after miR?21 treatment. Meanwhile, the mRNA and protein expression of PTEN were reduced and PI3K/AKT pathway been promoted. Our study demonstrated that miR-21 could promote proliferation and inhibit apoptosis of HSCs, and its mechanism may be related to PTEN/PI3K/AKT pathway.  相似文献   

9.
10.
Nicorandil exerts myocardial protection through its antihypoxia and antioxidant effects. Here, we investigated whether it plays an anti‐apoptotic role in diabetic cardiomyopathy. Sprague‐Dawley rats were fed with high‐fat diet; then single intraperitoneal injection of streptozotocin was performed. Rats with fasting blood glucose (FBG) higher than 11.1 mmol/L were selected as models. Eight weeks after the models were built, rats were treated with nicorandil (7.5 mg/kg day and 15 mg/kg day respectively) for 4 weeks. H9c2 cardiomyocytes were treated with nicorandil and then stimulated with high glucose (33.3 mmol/L). TUNEL assay and level of bcl‐2, bax and caspase‐3 were measured. 5‐HD was used to inhibit nicorandil. Also, PI3K inhibitor (Miltefosine) and mTOR inhibitor (rapamycin) were used to inhibit PI3K/Akt pathway. The results revealed that nicorandil (both 7.5 mg/kg day and 15mg/kg day) treatment can increase the level of NO in the serum and eNOS in the heart of diabetic rats compared with the untreated diabetic group. Nicorandil can also improve relieve cardiac dysfunction and reduce the level of apoptosis. In vitro experiments, nicorandil (100 µmol) can attenuate the level of apoptosis stimulated by high glucose significantly in H9C2 cardiomyocyte compared with the untreated group. The effect of nicorandil on apoptosis was blocked by 5‐HD, and it was accompanied with inhibition of the phosphorylation of PI3K, Akt, eNOS, and mTOR. After inhibition of PI3K/Akt pathway, the protective effect of nicorandil is restrained. These results verified that as a NO donor, nicorandil can also inhibit apoptosis in diabetic cardiomyopathy which is mediated by PI3K/Akt pathway.  相似文献   

11.
The study explores the effect of astragalus polysaccharide (APS) mediating P13K/Akt/eNOS signaling pathway on apoptosis of myocardial microvascular endothelial cells (MMECs) in hypoxia/reoxygenation (H/R). MMECs were classified into blank, H/R, H/R + 25 mg/L APS, H/R + 50 mg/L APS, H/R + 100 mg/L APS, H/R + LY, and HR + 100 mg/L APS + LY groups. Cell viability was detected using MTT assay and apoptotic cell morphological changes by Hoechst staining. NO content, cell cycle and apoptosis, PI3K/Akt/eNOS signaling pathway proteins were detected using nitrate reductase assay, flow cytometry and Western blotting. An increased cell survival rate, NO content and expression of PI3K/Akt/eNOS signaling pathway associated proteins, and a decreased apoptosis rate was observed in the H/R + 50 mg/L APS and H/R + 100 mg/L APS groups compared with the H/R and H/R + 25 mg/L APS groups. Compared with the H/R + 50 mg/L APS group, the apoptosis rate decreased, whereas the cell survival rate, NO content and expression of PI3K/Akt/eNOS signaling pathway associated proteins increased in the H/R + 100 mg/L APS group. The H/R + LY and HR + 100 mg/L APS + LY groups followed opposite trends. In comparison to the HR + 100 mg/L APS group, the apoptosis rate in the H/R + LY and HR + 100 mg/L APS + LY groups increased, and the cell survival rate, NO content and expression of PI3K/Akt/eNOS signaling pathway associated proteins decreased. Collectively, APS improves the damage caused by H/P by mediating PI3K/Akt/eNOS signaling pathway.  相似文献   

12.
It has been widely reported that exosomes derived from mesenchymal stem cells (MSCs) have a protective effect on myocardial infarction (MI). However, the specific molecules which play a damaging role in MSCs shuttled miRNAs are much less explored. MiRNA-153-3p (miR-153-3p) is a vital miRNA which has been proved to modulate cell proliferation, apoptosis, angiogenesis, peritoneal fibrosis and aortic calcification. Here, we aim to study the effect and mechanism of miR-153-3p in MSC-derived exosomes on hypoxia-induced myocardial and microvascular damage. The exosomes of MSCs were isolated and identified, and the MSCs-exosomes with low expression of miR-153-3p (exo-miR-153-3p) were constructed to interfere with the endothelial cells and cardiomyocytes in the oxygen-glucose deprivation (OGD) model. The viability, apoptosis, angiogenesis of endothelial cells and cardiomyocytes were determined. Additionally, ANGPT1/VEGF/VEGFR2/PI3K/Akt/eNOS pathway was detected by ELISA and/or western blot. The results illustrated that exo-miR-153-3p significantly reduced the apoptosis of endothelial cells and cardiomyocytes and promoted their viability. Meanwhile, exo-miR-153-3p can promote the angiogenesis of endothelial cells. Mechanistically, miR-153-3p regulates the VEGF/VEGFR2/PI3K/Akt/eNOS pathways by targeting ANGPT1. Intervention with VEGFR2 inhibitor (SU1498, 1 μM) remarkably reversed the protective effect of exo-miR-153-3p in vascular endothelial cells and cardiomyocytes treated by OGD. Collectively, MSCs-derived exosomes with low-expressed miR-153-3p notably promotes the activation of ANGPT1 and the VEGF/VEGFR2 /PI3K/Akt/eNOS pathways, thereby preventing the damages endothelial cells and cardiomyocytes against hypoxia.  相似文献   

13.
目的:研究沉默miRNA378*表达对柯萨奇B3病毒(CVB3)感染心肌细胞凋亡、内质网应激、网腔钙结合蛋白(calumenin)影响。方法:原代培养乳鼠心肌细胞分为:对照组(正常细胞)、柯萨奇病毒感染组(正常细胞+柯萨奇B3病毒)、miRNA378*沉默对照组(正常细胞+柯萨奇B3病毒+转染miRNA378*空质粒)、miRNA378*沉默组(正常细胞+柯萨奇B3病毒+转染miRNA378*沉默质粒),各组细胞分别转染和感染处理后置37℃、CO2培养箱中培养3 d。检测细胞α-平滑肌肌动蛋白(α-SMA)、细胞凋亡率、网腔钙结合蛋白、葡萄糖调节蛋白78(GRP78)及内质网应激信号通路因子激活转录因子6(ATF6)、转录因子C/EBP同源蛋白(CHOP)的表达。结果:通过检测ɑ-SMA蛋白,证实分离乳鼠细胞为心室肌细胞。TUNEL法检测不同组心室细胞凋亡情况发现,柯萨奇病毒感染组心室肌细胞凋亡明显,与柯萨奇病毒感染组心肌细胞相比较,miRNA378*沉默组心肌细胞凋亡细胞量明显减少。与柯萨奇病毒感染组比较,Calumenin表达减少(P<0.01),而GRP78、ATF6、CHOP表达增加(P<0.01)。结论:CVB3病毒感染心肌细胞作用与miRNA378*,引发内质网应激并激活信号通路因子,心肌细胞凋亡增加。  相似文献   

14.
Application of a certain concentration of local anesthetics during tumor resection inhibits the progression of tumor. The effects of ropivacaine in bladder cancer (BC) have never been explored. We explored the effects of ropivacaine on the progression of BC in vitro and in vivo. CCK8 assay and EDU staining was conducted to examine cell proliferation. Flow cytometry and transwell assay were performed to evaluate apoptosis and invasion, respectively. Expression of light chain 3 (LC3) was observed through immunofluorescence. Furthermore, the xenograft tumor model of BC was built to detect the effects of ropivacaine in vivo. IHC and TUNEL assay were conducted to detect cell proliferation and apoptosis in vivo. Ropivacaine inhibited the proliferation of T24 and 5639 cells with the 50% inhibitory concentration (IC50) of 20.08 and 31.86 µM, respectively. Ropivacaine suppressed the invasion ability and induces the apoptosis of cells. Besides, ropivacaine triggers obvious autophagy in BC cells. Moreover, ropivacaine blocks the PI3K/AKT signal pathway in BC cells. The impact of ropivacaine on cell viability, motility, and autophagy was reversed by 740 Y-P, the activator of PI3K/AKT signal pathway. The in vivo experiments demonstrated that ropivacaine inhibited the proliferation and mobility of BC. Ropivacaine has anti-carcinoma effects in BC via inactivating PI3K/AKT pathway, providing a new theoretical reference for the use of local anesthetics in the treatment of BC.  相似文献   

15.
摘要 目的:研究基于磷脂酰肌醇3激酶(PI3K)/蛋白激酶B(AKT)通路探究上调微小RNA 210(miR-210)对大鼠牙髓干细胞增殖、凋亡能力的影响。方法:选取10只健康Sprague-Dawley(SD)雄性大鼠,颈椎脱臼处死后提取大鼠下切牙牙髓,进行牙髓干细胞培养和鉴定。分为正常组(未进行处理),miR-210抑制组(给予20 nmol/L的miR-210抑制物),miR-210对照组(给予20 nmol/L的miR-210模拟物)三组。采用CCK-8法检测牙髓干细胞增殖活性,酶联免疫吸附试验(ELISA)检测ALP活性,流式细胞仪检测细胞凋亡,采用免疫印迹(Western blot)检测PI3K、AKT蛋白。结果:与正常组相比,miR-210抑制组细胞增殖、ALP活性降低,细胞凋亡率升高;miR-210对照组细胞增殖、ALP活性升高,细胞凋亡率降低(P<0.05)。与miR-210抑制组相比,miR-210对照组细胞增殖、ALP活性升高,细胞凋亡率降低(P<0.05)。与正常组相比,miR-210抑制组PI3K、p-AKT蛋白表达降低,miR-210对照组PI3K、p-AKT蛋白表达升高(P<0.05)。与miR-210抑制组相比,miR-210对照组PI3K、p-AKT蛋白表达升高(P<0.05)。结论:miR-210通过调控PI3K、p-AKT蛋白激活PI3K/AKT通路,促进大鼠牙髓干细胞增殖,抑制牙髓干细胞凋亡。  相似文献   

16.
The regulation of signal transmission and biological processes, such as cell proliferation, apoptosis, metabolism, migration, and angiogenesis are greatly influenced by the PI3K/AKT signaling pathway. Highly conserved endogenous non-protein-coding RNAs known as microRNAs (miRNAs) have the ability to regulate gene expression by inhibiting mRNA translation or mRNA degradation. MiRNAs serve key role in PI3K/AKT pathway as upstream or downstream target, and aberrant activation of this pathway contributes to the development of cancers. A growing body of research shows that miRNAs can control the PI3K/AKT pathway to control the biological processes within cells. The expression of genes linked to cancers can be controlled by the miRNA/PI3K/AKT axis, which in turn controls the development of cancer. There is also a strong correlation between the expression of miRNAs linked to the PI3K/AKT pathway and numerous clinical traits. Moreover, PI3K/AKT pathway-associated miRNAs are potential biomarkers for cancer diagnosis, therapy, and prognostic evaluation. The role and clinical applications of the PI3K/AKT pathway and miRNA/PI3K/AKT axis in the emergence of cancers are reviewed in this article.  相似文献   

17.
摘要 目的:本研究旨在探究黄芪甲苷(Astragaloside IV,Ast-IV)在缺血再灌注(ischemia-reperfusion,I/R)大鼠模型中的保护作用,并讨论黄芪甲苷在抑制I/R诱导心肌细胞凋亡过程中的作用。方法:通过左冠状动脉前降支结扎构建I/R大鼠模型;将40只SD大鼠分为4组:假手术组(Sham组)、模型组(I/R组)、黄芪甲苷干预组(Ast组)和黄芪甲苷+LY294002干预组(Ast+LY组)。使用试剂盒测定血清中心脏功能障碍标记物CPK、ALT、LDH和tropornin-T的表达水平;通过HE染色和TUNEL分别检测心肌组织病理学变化和心肌细胞凋亡情况;通过超氧化物荧光探针染色检测细胞内ROS水平;通过ELISA试剂盒测定心肌组织MDA、GSH和GSH-PX含量;免疫组织化学检测SOD2和HO-1蛋白表达水平,分析心肌氧化应激状态;通过Western blot检测PI3K、p-Akt、Akt、p-eNOS、eNOS、caspase-3、Bax和Bcl-2蛋白表达水平变化。结果:Ast组大鼠血浆CPK、ALT、LDH和tropornin-T酶活性均明显低于I/R组(P<0.05)。Ast组大鼠心肌纤维断裂,心肌细胞坏死和炎性细胞浸润等病变程度均低于I/R组。Ast组大鼠TUNEL阳性细胞数低于I/R组(P<0.05)。相较于I/R组,Ast组大鼠Caspase3和Bax表达水平均明显下调,Bcl-2和PI3K蛋白表达水平上调,p-Akt/Akt和p-eNOS/eNOS比值均显著上调(P<0.05)。Ast组大鼠DHE荧光强度显著低于Ast+LY组(P<0.05)。与I/R组相比,Ast组大鼠心肌组织中MDA含量降低,GSH、GSH-PX、SOD2和HO-1表达水平升高(P<0.05);与Ast组相比,Ast+LY组大鼠心肌组织中MDA含量升高,GSH、GSH-PX、SOD2和HO-1表达水平降低(P<0.05)。结论:黄芪甲苷通过激活PI3K/Akt信号通路,抑制心肌细胞氧化应激反应,从而减少I/R诱导大鼠心肌细胞凋亡,缓解I/R后大鼠心肌损伤。  相似文献   

18.
19.
20.
Intermedin (IMD) is a novel member of the calcitonin/calcitonin gene-related peptide family. We investigated the cardioprotective mechanism of IMD1-53 in the in vivo rat model of myocardial ischemia/reperfusion (I/R) injury and in vitro primary neonatal cardiomyocyte model of hypoxia/reoxygenation (H/R). Myocardial infarct size was measured by 2,3,5-triphenyl tetrazolium chloride staining. Cardiomyocyte viability was determined by trypan blue staining, cell injury by lactate dehydrogenase (LDH) leakage, and cardiomyocyte apoptosis by terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labeling assay, Hoechst staining, gel electrophoresis and caspase 3 activity. The translocation of mitochondrial cytochrome c of myocardia and expression of apoptosis-related factors Bcl-2 and Bax, phosphorylated Akt and phosphorylated GSK-3β were determined by western blot analysis. IMD1-53 (20 nmol/kg) limited the myocardial infarct size in rats with I/R; the infarct size was decreased by 54%, the apoptotic index by 30%, and caspase 3 activity by 32%; and the translocation of cytochrome c from mitochondria to cytosol was attenuated. IMD1-53 increased the mRNA and protein expression of Bcl-2 and ratio of Bcl-2 to Bax by 81 and 261%, respectively. IMD1-53 (1 × 10−7 mol/L) inhibited the H/R effect in cardiomyocytes by reducing cell death by 43% and LDH leakage by 16%; diminishing cellular apoptosis; decreasing caspase 3 activity by 50%; and increasing the phosphorylated Akt and GSK-3β by 41 and 90%, respectively. The cytoprotection of IMD1-53 was abolished with LY294002, a PI3K inhibitor. In conclusion, IMD1-53 exerts cardioprotective effect against myocardial I/R injury through the activation of the Akt/GSK-3β signaling pathway to inhibit mitochondria-mediated myocardial apoptosis. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号