首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to investigate miR-7 overexpression effects on neural differentiation of mesenchymal stem cells (MSCs) on both two-dimensional (2D) and three-dimensional (3D) culture systems. We upregulated miR-7 through lentiviral vector in trabecular meshwork MSCs (TMMSCs) and polymers of poly l -lactic acid/polycaprolactone fibrous scaffold were fabricated by electrospinning and characterized using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR). Neural markers expression was evaluated through quantitative-polymerase chain reaction (q-PCR) and immunostaining. The results showed that the high percentage of cell transduction (84.9%) and miR-7 expression (folds: 677.93 and 556.4) was detected in TMMSCs-miR-7(+). SEM and FTIR established the fabrication of the hybrid scaffold. q-PCR analysis showed that on days 14 and 21 of transduction, the expression level of Nestin and glial fibrillary acidic protein (GFAP) genes were significantly higher in the scaffold (3D) compared with tissue culture polystyrene (2D) culture. The expression of microtubule-associated protein-2 (MAP-2) and GFAP genes in TMMSCs-miR-7(+) cells were significantly higher than those miR-7(−) cells after 21 days of cell culture. Also, MAP-2 and Nestin proteins were detected in TMMSCs-miR-7(+) cells. Our results demonstrate that miR-7 is involved in neural differentiation of TMMSCs and scaffold can improve differentiate into glial and neural progenitor cells. These findings provided some information for future use of microRNAs and scaffold in tissue engineering and cell therapy for neurological diseases.  相似文献   

2.
While the differentiation factors have been widely used to differentiate mesenchymal stem cells (MSCs) into various cell types, they can cause harm at the same time. Therefore, it is beneficial to propose methods to differentiate MSCs without factors. Herein, magnetoelectric (ME) nanofibers were synthesized as the scaffold for the growth of MSCs and their differentiation into neural cells without factors. This nanocomposite takes the advantage of the synergies of the magnetostrictive filler, CoFe2O 4 nanoparticles (CFO), and piezoelectric polymer, polyvinylidene difluoride (PVDF). Graphene oxide nanosheets were decorated with CFO nanoparticles for a proper dispersion in the polymer through a hydrothermal process. After that, the piezoelectric PVDF polymer, which contained the magnetic nanoparticles, underwent the electrospun process to form ME nanofibers, the ME property of which has the potential to be used in areas such as tissue engineering, biosensors, and actuators.  相似文献   

3.
4.
Mesenchymal stem cells (MSCs) are a heterogeneous population of stem/progenitor cells with pluripotent capacity to differentiate into mesodermal and non‐mesodermal cell lineages, including osteocytes, adipocytes, chondrocytes, myocytes, cardiomyocytes, fibroblasts, myofibroblasts, epithelial cells, and neurons. MSCs reside primarily in the bone marrow, but also exist in other sites such as adipose tissue, peripheral blood, cord blood, liver, and fetal tissues. When stimulated by specific signals, these cells can be released from their niche in the bone marrow into circulation and recruited to the target tissues where they undergo in situ differentiation and contribute to tissue regeneration and homeostasis. Several characteristics of MSCs, such as the potential to differentiate into multiple lineages and the ability to be expanded ex vivo while retaining their original lineage differentiation commitment, make these cells very interesting targets for potential therapeutic use in regenerative medicine and tissue engineering. The feasibility for transplantation of primary or engineered MSCs as cell‐based therapy has been demonstrated. In this review, we summarize the current knowledge on the signals that control trafficking and differentiation of MSCs. J. Cell. Biochem. 106: 984–991, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Tissue and stem cell encapsulation andtransplantation were considered as promising tools in the treatment of patients with diabetes mellitus. The aim of this study was to evaluate the effect of microfluidic encapsulation on the differentiation of trabecular meshwork mesenchymal stem cells (TM-MSC), into insulin-producing cells (IPCs) both in vitro and in vivo. The presence of differentiated cells in microfibers (three dimensional [3D]) and tissue culture plates (TCPS; two dimensional [2D]) culture was evaluated by detecting mRNA and protein expression of pancreatic islet-specific markers as well as measuring insulin release of cells in response to glucose challenges. Finally, semi-differentiated cells in microfibers (3D) and 2D cultures were used to control the glucose level in diabetic rats. The results of this study showed that MSCs differentiated in alginate microfibers (fabricated by microfluidic device) express more Pdx-1 mRNA (1.938-fold, p-value: 0.0425) and Insulin mRNA (2.841-fold, p-value: 0.0001) compared with those cultured on TCPS. Furthermore, cell encapsulation in microfluidic derived microfibers decreased the level of blood glucose in diabetic rats. The approach used in this study showed the possibility of alginate microfibers as a matrix for differentiation of TM-MSCs (as a new source) into IPCs. In addition, it could minimize different steps in stem cell differentiation, handling, and encapsulation, which lead to loss of an unlimited number of cells.  相似文献   

6.
7.
Mesenchymal stem cells (MSC) are known to be a valuable cell source for tissue engineering and regenerative medicine. However, one of the main limiting steps in their clinical use is the amplification step. MSC expansion on microcarriers has emerged during the last few years, fulfilling the lack of classical T‐flasks expansion. Even if the therapeutic potential of MSC as aggregates has been recently highlighted, cell aggregation during expansion has to be avoided. Thus, MSC culture on microcarriers has still to be improved, notably concerning cell aggregation prevention. The aim of this study was to limit cell aggregation during MSC expansion on Cytodex‐1®, by evaluating the impact of several culture parameters. First, MSC cultures were performed at different agitation rates (0, 25, and 75 rpm) and different initial cell densities (25 and 50 × 106 cell g?1 Cytodex‐1®). Then, the MSC aggregates were put into contact with additional available surfaces (T‐flask, fresh and used Cytodex‐1®) at different times (before and after cell aggregation). The results showed that cell aggregation was partly induced by agitation and prevented in static cultures. Moreover, cell aggregation was dependent on cell density and correlated with a decrease in the total cell number. It was however shown that the aggregated organization could be dissociated when in contact with additional surfaces such as T‐flasks or fresh Cytodex‐1® carriers. Finally, cell aggregation could be successfully limited in spinner flask by adding fresh Cytodex‐1® carriers before its onset. Those results indicated that MSC expansion on agitated Cytodex‐1® microcarriers could be performed without cell aggregation, avoiding a decrease in total cell number. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

8.
In this work we describe the establishment of mesenchymal stem cells (MSCs) derived from embryonic stem cells (ESCs) and the role of bFGF in adipocyte differentiation. The totipotency of ESCs and MSCs was assessed by immunofluorescence staining and RT-PCR of totipotency factors. MSCs were successfully used to induce osteoblasts, chondrocytes and adipocytes. MSCs that differentiated into adipocytes were stimulated with and without bFGF. The OD/DNA (optical density/content of total DNA) and expression levels of the specific adipocyte genes PPARγ2 (peroxisome proliferator activated receptor γ2) and C/EBPs were higher in bFGF cells. Embryonic bodies had a higher adipocyte level compared with cells cultured in plates. These findings indicate that bFGF promotes adipocyte differentiation. MSCs may be useful cells for seeding in tissue engineering and have enormous therapeutic potential for adipose tissue engineering.  相似文献   

9.
Human mesenchymal stem cells (MSC) from adult and fetal tissues are promising candidates for cell therapy but there is a need to identify the optimal source for bone regeneration. We have previously characterized MSC populations in first trimester fetal blood, liver, and bone marrow and we now evaluate their osteogenic differentiation potential in comparison to adult bone marrow MSC. Using quantitative real-time RT-PCR, we demonstrated that 16 osteogenic-specific genes (OC, ON, BSP, OP, Col1, PCE, Met2A, OPG, PHOS1, SORT, ALP, BMP2, CBFA1, OSX, NOG, IGFII) were expressed in both fetal and adult MSC under basal conditions and were up-regulated under osteogenic conditions both in vivo and during an in vitro 21-day time-course. However, under basal conditions, fetal MSC had higher levels of osteogenic gene expression than adult MSC. Upon osteogenic differentiation, fetal MSC produced more calcium in vitro and reached higher levels of osteogenic gene up-regulation in vivo and in vitro. Second, we observed a hierarchy within fetal samples, with fetal bone marrow MSC having greater osteogenic potential than fetal blood MSC, which in turn had greater osteogenic potential than fetal liver MSC. Finally, we found that the level of gene expression under basal conditions was positively correlated with both calcium secretion and gene expression after 21 days in osteogenic conditions. Our findings suggest that stem cell therapy for bone dysplasias such as osteogenesis imperfecta may benefit from preferentially using first trimester fetal blood or bone marrow MSC over fetal liver or adult bone marrow MSC.  相似文献   

10.
A considerable amount of retrospective data is available that describes putative mesenchymal stem cells (MSCs). However, there is still very little knowledge available that documents the properties of a MSC in its native environment. Although the precise identity of MSCs remains a challenge, further understanding of their biological properties will be greatly advanced by analyzing the mechanisms that govern their self-renewal and differentiation potential. This review begins with the current state of knowledge on the biology of MSCs, specifically with respect to their existence in the adult organism and postulation of their biological niche. While MSCs are considered suitable candidates for cell-based strategies owing to their intrinsic capacity to self-renew and differentiate, there is currently little information available regarding the molecular mechanisms that govern their stem cell potential. We propose here a model for the regulation of MSC differentiation, and recent findings regarding the regulation of MSC differentiation are discussed. Current research efforts focused on elucidating the mechanisms regulating MSC differentiation should facilitate the design of optimal in vitro culture conditions to enhance their clinical utility cell and gene therapy.  相似文献   

11.
猪脂肪间充质干细胞的分离培养及其成脂分化   总被引:3,自引:0,他引:3  
脂肪间充质干细胞(Adipose mesenchymal stemcell,AMSCs)是一类来源于脂肪组织并具有多向分化潜能的干细胞。近年来的研究证明,脂肪组织具有取材方便和干细胞含量高的优势,有望在研究与应用领域成为骨髓干细胞的替代物。猪是一种比啮齿类更接近人类的模式动物,具有较强的脂肪沉积能力。本研究探讨了猪脂肪间充质干细胞的体外分离纯化、培养扩增和向脂肪细胞诱导分化的条件。采用Ⅰ型胶原酶消化分离脂肪微管基质成分,传代培养扩增,流式细胞仪检测细胞表面标记。取第3-7代AMSCs,采用不同方法诱导AMSCs向脂肪细胞分化,光学显微镜下可观察到诱导后的细胞内有高折光性的小脂滴出现,油红O染色成阳性,不同诱导方法诱导率不同。被诱导细胞用RT-PCR可检测到脂肪细胞分化标志基因LPL和PPARγ的表达。结果表明可以从脂肪组织中分离培养出AMSCs,经传代后可提高其纯度。CD44、CD105表达呈阳性,CD14、CD34、S-100、HLA-DR呈阴性,在合适的诱导条件下,可向脂肪细胞分化。  相似文献   

12.
It is essential to characterize the cellular properties of mesenchymal stem cell populations to maintain quality specifications and control in regenerative medicine. Biofunctional materials have been designed as artificial matrices for the stimulation of cell adhesion and specific cellular functions. We have developed recombinant maltose-binding protein (MBP)-fused proteins as artificial adhesion matrices to control human mesenchymal stem cell (hMSC) fate by using an integrin-independent heparin sulfate proteoglycans-mediated cell adhesion. In this study, we characterize cell adhesion-dependent cellular behaviors of human adipose-derived stem cells (hASCs) and human bone marrow stem cells (hBMSCs). We used an MBP-fused basic fibroblast growth factor (MF)-coated surface and fibronectin (FN)-coated surface to restrict and support, respectively, integrin-mediated adhesion. The cells adhered to MF exhibited restricted actin cytoskeleton organization and focal adhesion kinase phosphorylation. The hASCs and hBMSCs exhibited different cytoplasmic projection morphologies on MF. Both hASCs and hBMSCs differentiated more dominantly into osteogenic cells on FN than on MF. In contrast, hASCs differentiated more dominantly into adipogenic cells on MF than on FN, whereas hBMSCs differentiated predominantly into adipogenic cells on FN. The results indicate that hASCs exhibit a competitive differentiation potential (osteogenesis vs. adipogenesis) that depends on the cell adhesion matrix, whereas hBMSCs exhibit both adipogenesis and osteogenesis in integrin-mediated adhesion and thus hBMSCs have noncompetitive differentiation potential. We suggest that comparing differentiation behaviors of hMSCs with the diversity of cell adhesion is an important way to characterize hMSCs for regenerative medicine.  相似文献   

13.
为研究1-磷酸鞘氨醇 (Sphingosine-1-phosphate,S1P) 对脐带间充质干细胞 (Umbilical cord mesenchymal stem cells,UC-MSCs) 和脂肪间充质干细胞 (Adipose derived mesenchymal stem cells,AD-MSCs) 向心肌分化的影响,探索其适宜的作用时间和浓度,将UC-MSCs和AD-MSCs接种到培养板,用添加不同浓度S1P的心肌细胞培养液诱导两种干细胞向心肌分化,诱导时间分为7 d、14 d和28 d。采用免疫荧光染色检测心肌特异性蛋白,α-肌动蛋白 (α-actin)、缝隙连接蛋白 (Connexin-43) 以及肌球蛋白重链 (MYH-6) 的表达,并通过共聚焦显微镜和荧光显微镜进行观察;采用MTT分析细胞的活性;膜片钳检测分化细胞的钙瞬变 (此为心肌细胞的功能性指标)。结果表明,S1P与心肌细胞培养液协同作用,能够促进UC-MSCs和AD-MSCs向心肌细胞的分化。并且,随着S1P浓度的增加,促分化作用增强,但细胞活性降低。S1P在心肌细胞培养液中的适宜作用时间为14 d,适宜作用浓度为0.5 μmol/L。而且联合心肌细胞培养液可以使UC-MSCs和AD-MSCs的心肌分化细胞产生钙瞬变,具有类似心肌细胞的功能性。S1P能够与心肌细胞培养液协同作用,促进UC-MSCs和AD-MSCs的心肌功能性分化。  相似文献   

14.
Recent studies have shown that statins, the most potent inhibitors of 3-hydroxy-2-methylglutaryl coenzyme A (HMG-CoA) reductase, stimulate bone formation in vitro and in rodents by activating the expression of bone morphogenetic protein-2 (BMP-2), one of the most critical osteoblast differentiation-inducing factors. However, the effect of statins on mesenchymal stem cells (MSCs) is yet to be reported. The purpose of this study is to investigate the influence of fluvastatin, lovastatin, and pravastatin, three commonly prescribed lipid-lowering agents, on the proliferation and differentiation of human MSCs. To our surprise, even though fluvastatin and lovastatin effectively suppressed the growth of human MSCs, a neuroglia rather than osteoblast-like morphology was observed after treatment. Interestingly, such morphological change was inhibited by the co-addition of geranylgeranyl pyrophosphate (GGPP). Immunofluorescence staining with antibodies against neuron-, astrocyte-, as well as oligodendrocyte-specific markers confirmed the neuroglial identity of the differentiated cells. However, BMP-2 is unlikely to play a positive role in neuroglial differentiation of MSCs since its expression was down-regulated in fluvastatin-treated cells. Taken together, our results suggest that fluvastatin and lovastatin induce neuroglial differentiation of human MSCs and that these cholesterol-lowering agents might be used in conjunction with MSC transplantation in the future for treating neurological disorders and injuries.  相似文献   

15.
Although studies in vivo revealed promising results in bone regeneration after implantation of scaffolds together with osteogenic progenitor cells, basic questions remain how material surfaces control the biology of mesenchymal stem cells (MSC). We used human MSC derived from bone marrow and studied the osteogenic differentiation on calcium phosphate surfaces. In osteogenic differentiation medium MSC differentiated to osteoblasts on hydroxyapatite and BONITmatrix, a degradable xerogel composite, within 14 days. Cells revealed a higher alkaline phosphatase (ALP) activity and increased RNA expression of collagen I and osteocalcin using real-time RTPCR compared with cells on tissue culture plastic. To test whether material surface characteristics alone are able to stimulate osteogenic differentiation, MSC were cultured on the materials in expansion medium without soluble additives for osteogenic differentiation. Indeed, cells on calcium phosphate without osteogenic differentiation additives developed to osteoblasts as shown by increased ALP activity and expression of osteogenic genes, which was not the case on tissue culture plastic. Because we reasoned that the stimulating effect on osteogenesis by calcium phosphate surfaces depends on an altered cell-extracellular matrix interaction we studied the dynamic behaviour of focal adhesions using cells transfected with GFP labelled vinculin. On BONITmatrix, an increased mobility of focal adhesions was observed compared with cells on tissue culture plastic. In conclusion, calcium phosphate surfaces are able to drive MSC to osteoblasts in the absence of osteogenic differentiation supplements in the medium. An altered dynamic behaviour of focal adhesions on calcium phosphate surfaces might be involved in the molecular mechanisms which promote osteogenic differentiation.  相似文献   

16.
Osteoporosis is a systemic metabolic bone disease with characteristics of bone loss and microstructural degeneration. The personal and societal costs of osteoporosis are increasing year by year as the ageing of population, posing challenges to public health care. Homing disorders, impaired capability of osteogenic differentiation, senescence of mesenchymal stem cells (MSCs), an imbalanced microenvironment, and disordered immunoregulation play important roles during the pathogenesis of osteoporosis. The MSC transplantation promises to increase osteoblast differentiation and block osteoclast activation, and to rebalance bone formation and resorption. Preclinical investigations on MSC transplantation in the osteoporosis treatment provide evidences of enhancing osteogenic differentiation, increasing bone mineral density, and halting the deterioration of osteoporosis. Meanwhile, the latest techniques, such as gene modification, targeted modification and co‐transplantation, are promising approaches to enhance the therapeutic effect and efficacy of MSCs. In addition, clinical trials of MSC therapy to treat osteoporosis are underway, which will fill the gap of clinical data. Although MSCs tend to be effective to treat osteoporosis, the urgent issues of safety, transplant efficiency and standardization of the manufacturing process have to be settled. Moreover, a comprehensive evaluation of clinical trials, including safety and efficacy, is still needed as an important basis for clinical translation.  相似文献   

17.
There have been many clinical trials recently using ex vivo‐expanded human mesenchymal stem cells (MSCs) to treat several disease states such as graft‐versus‐host disease, acute myocardial infarction, Crohn's disease, and multiple sclerosis. The use of MSCs for therapy is expected to become more prevalent as clinical progress is demonstrated. However, the conventional 2‐dimensional (2D) culture of MSCs is laborious and limited in scale potential. The large dosage requirement for many of the MSC‐based indications further exacerbates this manufacturing challenge. In contrast, expanding MSCs as spheroids does not require a cell attachment surface and is amenable to large‐scale suspension cell culture techniques, such as stirred‐tank bioreactors. In the present study, we developed and optimized serum‐free media for culturing MSC spheroids. We used Design of Experiment (DoE)‐based strategies to systematically evaluate media mixtures and a panel of different components for effects on cell proliferation. The optimization yielded two prototype serum‐free media that enabled MSCs to form aggregates and proliferate in both static and dynamic cultures. MSCs from spheroid cultures exhibited the expected immunophenotype (CD73, CD90, and CD105) and demonstrated similar or enhanced differentiation potential toward all three lineages (osteogenic, chondrogenic, adipogenic) as compared with serum‐containing adherent MSC cultures. Our results suggest that serum‐free media for MSC spheroids may pave the way for scale‐up production of MSCs in clinically relevant manufacturing platforms such as stirred tank bioreactors. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:974–983, 2014  相似文献   

18.
BACKGROUND Collagen is one of the most commonly used natural biomaterials for tendon tissue engineering.One of the possible practical ways to further enhance tendon repair is to combine a porous collagen sponge scaffold with a suitable growth factor or cytokine that has an inherent ability to promote the recruitment,proliferation,and tenogenic differentiation of cells.However,there is an incomplete understanding of which growth factors are sufficient and optimal for the tenogenic differentiation of rat bone marrow mesenchymal stem cells(BMSCs)in a collagen sponge-based 3D culture system.AIM To identify one or more ideal growth factors that benefit the proliferation and tenogenic differentiation of rat BMSCs in a porous collagen sponge scaffold.METHODS We constructed a 3D culture system based on a type I collagen sponge scaffold.The surface topography of the collagen sponge scaffold was observed by scanning electron microscopy.Primary BMSCs were isolated from Sprague-Dawley rats.Cell survival on the surfaces of the scaffolds with different growth factors was assessed by live/dead assay and CCK-8 assay.The mRNA and protein expression levels were confirmed by quantitative real-time polymerase chain reaction and Western blot,respectively.The deposited collagen was assessed by Sirius Red staining.RESULTS Transforming growth factorβ1(TGF-β1)showed great promise in the tenogenic differentiation of BMSCs compared to growth differentiation factor 7(GDF-7)and insulin-like growth factor 1(IGF-1)in both the 2D and 3D cultures,and the 3D culture enhanced the differentiation of BMSCs into tenocytes well beyond the level of induction in the 2D culture after TGF-β1 treatment.In the 2D culture,the proliferation of the BMSCs showed no significant changes compared to the control group after TGF-β1,IGF-1,or GDF-7 treatment.However,TGF-β1 and GDF-7 could increase the cell proliferation in the 3D culture.Strangely,we also found more dead cells in the BMSC-collagen sponge constructs that were treated with TGF-β1.Moreover,TGF-β1 promoted more collagen deposition in both the 2D and 3D cultures.CONCLUSION Collagen sponge-based 3D culture with TGF-β1 enhances the responsiveness of the proliferation and tenogenic differentiation of rat BMSCs.  相似文献   

19.
Yan WH  Xu XH  Xu Y  Han XF  Ma L  Wang JZ  Xing Y 《中国应用生理学杂志》2006,22(4):419-422,I0001
目的:观察骨髓间充质干细胞(MSCs)分化为神经细胞过程中,神经元微管相关蛋白Tau及其磷酸化位点pSer202的表达和含量的差异,探讨Tau蛋白在此过程中的作用。方法:使用EGF和bFGF联合诱导第4、第8和第12代的MSCs向神经细胞分化;14d后,免疫细胞化学法检测Tau蛋白和pSer202的表达;ELISA法分析各代细胞Tau蛋白含量。结果:第4、第8和第12代未诱导组Tau蛋白阳性细胞均〈6%;诱导14d后,各代MSCs在形态上均分化为类似神经元样细胞,Tau蛋白阳性细胞率较未诱导组显著升高(P〈0.05),但各代之间无显著性,而pSer202在各代MSCs未诱导组和诱导组中均未见表达。ELISA法检测发现Tau蛋白含量在诱导过程中呈上升趋势,14d时各代细胞分化后的Tau蛋白升高程度无显著性差异。结论:MSCs向神经细胞分化过程中Tau蛋白表达量增加且可能尚未发生磷酸化,将有助于神经细胞的正常分化和突触形成。  相似文献   

20.
In vitro differentiation of human mesenchymal stem cells to epithelial lineage   总被引:12,自引:0,他引:12  
Our study examined whether human bone marrow-derived MSCs are able to differentiate, in vitro, into functional epithelial-like cells. MSCs were isolated from the sternum of 8 patients with different hematological disorders. The surface phenotype of these cells was characterized.To induce epithelial differentiation, MSCs were cultured using Epidermal Growth Factor, Keratinocyte Growth Factor, Hepatocyte Growth Factor and Insulin-like growth Factor-II. Differentiated cells were further characterized both morphologically and functionally by their capacity to express markers with specificity for epithelial lineage. The expression of cytokeratin 19 was assessed by immunocytochemistry, and cytokeratin 18 was evaluated by quantitative RT-PCR (Taq-man). The data demonstrate that human MSCs isolated from human bone marrow can differentiate into epithelial-like cells and may thus serve as a cell source for tissue engineering and cell therapy of epithelial tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号