首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence indicates that inflammatory response is significant during the physiological process of human parturition; however, the specific signaling pathway that triggers inflammation is undefined. Toll-like receptors (TLRs) are key upstream gatekeepers that control inflammatory activation before preterm delivery. Our previous study showed that TLR4 expression was significantly increased in human pregnancy tissue during preterm and term labor. Therefore, we explore whether TLR4 plays a role in term labor by initiating inflammatory responses, therefore promoting uterine activation. The results showed that expression of TLR4, interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), CC chemokine ligand 2 (CCL-2), and uterine contraction-associated proteins (CAPs) was upregulated in the human and mice term labor (TL) group compared with the not-in-labor (TNL) group, and the TLR4 level positively correlated with CAP expression. In pregnant TLR4-knockout (TLR4−/−) mice, gestation length was extended by 8 hr compared with the wild-type group, and the expression of IL-1β, IL-6, TNF-α, CCL-2, and CAPs was decreased in TLR4−/− mice. Furthermore, nuclear factor-κB (NF-κB) and P38MAPK activation is involved in the initiation of labor but was inhibited in TLR4−/− mice. In uterine smooth muscle cells, the expression of inflammatory cytokines and CAPs decreased when the NF-κB and P38MAPK pathway was inhibited. Our data suggest that TLR4 is a key factor in regulating the inflammatory response that drives uterine activation and delivery initiation via activating the NF-κB/P38MAPK pathway.  相似文献   

2.
Platelet-neutrophil interaction is well known for its role in inflammatory diseases; however, its biological role in atherosclerosis (AS) progression remains unclear. Human peripheral blood neutrophils were obtained to compare toll-like receptor 4 (TLR4), tumor necrosis factor α (TNF-α), interleukin (IL)-1β and myeloid-related proteins 8/14 (Mrp8/14) levels in 22 AS patients with those in 18 healthy controls using quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). Meanwhile, mouse marrow neutrophils subjected to different treatment were collected for the ELISA assay, cell apoptosis, and Western blot analysis. Normal diet or high-fat diet ApoE−/− mice with or without administration of Mrp8/14 antagonist paquinimod were used for plasma collection to measure total cholesterol, triglycerides, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol, TNF-α, IL-1β, Mrp8/14, TLR4, and nuclear factor (NF)-κB p65 levels. The results showed that Mrp8/14 and TLR4-mediated inflammatory pathway was activated in neutrophils of AS patients. In vitro experiments demonstrated that platelet-neutrophil interaction promoted the Mrp8/14 release and inhibited neutrophil apoptosis via P-selectin. Furthermore, platelet-neutrophil interaction upregulated TLR4/myeloid differentiation factor 88/NF-κB pathway. Conversely, Mrp8/14/TLR4/NF-κB interference alleviated AS progression. In conclusion, Mrp8/14/TLR4/NF-κB activated by platelet-neutrophil interaction is an important inflammatory signaling pathway for AS pathogenesis.  相似文献   

3.
The present study evaluated the protective effect of the natural compound flavonoids of Rosa roxburghii Tratt (FRT) against γ-radiation-induced apoptosis and inflammation in mouse thymus cells in vivo and in vitro. Thymus cells and mice were exposed to 60Co γ-ray at a dose of 6 Gy. The radiation treatment induced significant cell apoptosis and inflammation. Radiation increased the expressions of cleaved caspase 3/8–10, AIF, and PARP-1, and FRT could mitigate their activation and inhibit subsequent apoptosis in the thymus both in vitro or in vivo. Irradiation increased the mRNA expression of ICAM-1/VCAM-1, IL-1α/IL-6 and TNF-α/NF-κB. Our results also indicated that FRT alleviated gene expression of some inflammatory factors such as ICAM-1/VCAM-1, TNF-α/NF-κB, but not IL-1α/IL-6. Irradiation increased the protein expression levels of ICAM-1/VCAM-1, IL-1α/IL-6 and TNF-α/NF-Κb, and our results also indicated that FRT alleviated protein level expression of certain inflammatory factors such as ICAM-1, IL-1α/IL-6, TNF-α/NF-κB, but not VCAM-1. Our results suggested that FRT enhanced radioprotection at least partially by regulating caspase 3/8–10, AIF, and PARP-1 to reduce apoptosis and by regulating ICAM-1, IL-1α/IL-6, TNF-α/NF-κB to reduce inflammation.  相似文献   

4.
5.
Inflammatory bowel disease (IBD) shows an increasing prevalence and harm in western countries. Conventional therapies are associated with bad compliance and adverse side effects. Natural substances like cinnamon extract (CE) could be an additional therapy. We found recently that CE acts anti-inflammatory on mast cells — discussed of being relevant in IBD. Here, we analysed the effects of CE on murine IL-10−/− colitis as model for IBD. Mice were treated 12 weeks with or without CE in drinking water. Clinical scores and disease activity index were assessed. Colonic tissue samples were analysed for infiltration, tissue damage, bowel wall thickness, expression of pro-inflammatory mediators, mast cell proteases, tight junction proteins, and NF-κB signaling. Following treatment with CE, symptoms of murine colitis as well as increased infiltration of immune cells, tissue damage and bowel wall thickness in colon tissue of IL-10−/− mice were diminished significantly. MIP-2, TNF, IFNγ, CCL2, CCL3, CCL4 and IL-1β as well as MC-CPA, MCP-1 and MCP-4 were strongly upregulated in IL-10−/− mice compared to WT, but noteworthy not in CE group. Expression of tight junction proteins was not influenced by CE. Phosphorylation of IκB was slightly down-regulated in CE treated IL-10−/− mice compared to IL-10−/− controls. In summary, CE decreases inflammatory symptoms and expression of inflammatory markers in murine IL-10−/− colitis. CE has no influence on tight junction proteins, but seems acting via reducing pro-inflammatory mediators and recruitment of neutrophil granulocytes probably by inhibiting NF-κB signaling.  相似文献   

6.
7.
Innate immune and inflammatory responses mediated by Toll like receptors (TLRs) have been implicated in myocardial ischemia/reperfusion (I/R) injury. This study examined the role of TLR3 in myocardial injury induced by two models, namely, myocardial infarction (MI) and I/R. First, we examined the role of TLR3 in MI. TLR3 deficient (TLR3−/−) and wild type (WT) mice were subjected to MI induced by permanent ligation of the left anterior descending (LAD) coronary artery for 21 days. Cardiac function was measured by echocardiography. Next, we examined whether TLR3 contributes to myocardial I/R injury. TLR3−/− and WT mice were subjected to myocardial ischemia (45 min) followed by reperfusion for up to 3 days. Cardiac function and myocardial infarct size were examined. We also examined the effect of TLR3 deficiency on I/R-induced myocardial apoptosis and inflammatory cytokine production. TLR3−/− mice showed significant attenuation of cardiac dysfunction after MI or I/R. Myocardial infarct size and myocardial apoptosis induced by I/R injury were significantly attenuated in TLR3−/− mice. TLR3 deficiency increases B-cell lymphoma 2 (BCL2) levels and attenuates I/R-increased Fas, Fas ligand or CD95L (FasL), Fas-Associated protein with Death Domain (FADD), Bax and Bak levels in the myocardium. TLR3 deficiency also attenuates I/R-induced myocardial nuclear factor KappaB (NF-κB) binding activity, Tumor necrosis factor alpha (TNF-α) and Interleukin-1 beta (IL-1β) production as well as I/R-induced infiltration of neutrophils and macrophages into the myocardium. TLR3 plays an important role in myocardial injury induced by MI or I/R. The mechanisms involve activation of apoptotic signaling and NF-κB binding activity. Modulation of TLR3 may be an effective approach for ameliorating heart injury in heart attack patients.  相似文献   

8.
9.

Background

Human mast cells are multifunctional cells capable of a wide variety of inflammatory responses. Baicalein (BAI), isolated from the traditional Chinese herbal medicine Huangqin (Scutellaria baicalensis Georgi), has been shown to have anti-inflammatory effects. We examined its effects and mechanisms on the expression of inflammatory cytokines in an IL-1β- and TNF-α-activated human mast cell line, HMC-1.

Methods

HMC-1 cells were stimulated either with IL-1β (10 ng/ml) or TNF-α (100 U/ml) in the presence or absence of BAI. We assessed the expression of IL-6, IL-8, and MCP-1 by ELISA and RT-PCR, NF-κB activation by electrophoretic mobility shift assay (EMSA), and IκBα activation by Western blot.

Results

BAI (1.8 to 30 μM) significantly inhibited production of IL-6, IL-8, and MCP-1 in a dose-dependent manner in IL-1β-activated HMC-1. BAI (30 μM) also significantly inhibited production of IL-6, IL-8, and MCP-1 in TNF-α-activated HMC-1. Inhibitory effects appear to involve the NF-κB pathway. BAI inhibited NF-κB activation in IL-1β- and TNF-α-activated HMC-1. Furthermore, BAI increased cytoplasmic IκBα proteins in IL-1β- and TNF-α-activated HMC-1.

Conclusion

Our results showed that BAI inhibited the production of inflammatory cytokines through inhibition of NF-κB activation and IκBα phosphorylation and degradation in human mast cells. This inhibitory effect of BAI on the expression of inflammatory cytokines suggests its usefulness in the development of novel anti-inflammatory therapies.  相似文献   

10.
该研究探讨人参皂苷Rg1对非酒精性脂肪性肝细胞炎症反应的作用及其分子机制。用1 mmol/L游离脂肪酸处理HepG2和L02细胞24 h,再用20μg/mL或40μg/mL人参皂苷Rg1处理6 h;设置对照组、模型组、低剂量Rg1组、高剂量Rg1组。全自动生化仪检测各组细胞上清谷丙转氨酶(alanine aminotransferase,ALT)、谷草转氨酶(aspartate aminotransferase,AST)的含量;酶联免疫吸附法测定细胞上清IL-1β、IL-6、TNF-α。RT-qPCR及Western blot检测NF-κB通路相关基因及蛋白的改变。免疫荧光染色观察NF-κB核转移;Western blot检测各组胞质与胞核内的NF-κB P65蛋白的表达。与对照组相比,模型组培养上清炎症指标明显增加(P<0.05);Rg1能降低炎症指标的表达(P<0.05)。Rg1能减少游离脂肪酸诱导的NF-κB磷酸化及其下游IL-1β、IL-6、TNF-α的表达,减少NF-κB P65从胞质向胞核的转移(P<0.05)。Rg1可通过抑制NF-κB活化减少NASH细胞模型炎症反应,为非酒精性脂肪性肝炎的治疗提供了可能的靶点。  相似文献   

11.
This study investigated the effect of butanol extract of AS (ASBUE) on atherosclerosis in apolipoprotein E-deficient (ApoE−/−) mice. The mice were administered ASBUE (390 or 130 mg/kg/day) or rosuvastatin (RSV) via oral gavage for eight weeks. In ApoE−/− mice, ASBUE suppressed the abnormal body weight gain and improved serum and liver biochemical indicators. ASBUE remarkably reduced the aortic plaque area, improved liver pathological conditions, and lipid metabolism abnormalities, and altered the intestinal microbiota structure in ApoE−/− mice. In the vascular tissue of ASBUE-treated mice, P-IKKβ, P-NFκB, and P-IκBα levels tended to decrease, while IκB-α increased in high fat-diet-fed atherosclerotic mice. These findings demonstrated the anti-atherosclerotic potential of ASBUE, which is mediated by the interaction between the gut microbiota and lipid metabolism and regulated via the Nuclear Factor-kappa B (NF-κB) pathway. This work paves the groundwork for subsequent studies to develop innovative drugs to treat atherosclerosis.  相似文献   

12.
Nonalcoholic fatty liver disease (NAFLD) is associated with hepatic steatosis, inflammation and liver fibrosis and has become one of the leading causes of hepatocellular carcinoma and liver failure. However, the underlying molecular mechanism of hepatic steatosis and the progression to nonalcoholic steatohepatitis (NASH) are not fully understood. Herein, we discovered that AMPKα2 catalytic subunit showed reduced expression in the liver following high fat diet (HFD) feeding to mice. Importantly, knockout of AMPKα2 in mice aggravated NAFLD, hepatic steatosis, inflammation and fibrosis. On the other hand, hepatocyte-targeted overexpression of AMPKα2 prevented or reversed NAFLD indications. In vivo mechanistic studies revealed that increased phosphorylation of IKKα/β and NF-κB in HFD-fed AMPKα2−/− mice compared to WT mice, and treatment of these mouse cohorts with an inhibitor of NF-κB signaling for 4 weeks, effectively attenuated the progression of steatohepatitis and metabolic disorder features. In summary, AMPKα2 provides a protective role in the process of hepatic steatosis to NASH progression through suppression of liver NF-κB signaling.  相似文献   

13.

Aims

Enalapril, an angiotensin-converting enzyme (ACE) inhibitor, has pleiotropic effects such as anti-inflammatory effects. This study investigated the effect of enalapril on the nuclear factor-kappa B (NF-κB) pathway and on experimental colitis.

Main methods

The human intestinal epithelial cell (IEC) line COLO 205 and peritoneal macrophages from C57BL/6 wild-type mice and IL-10-deficient (IL-10−/−) mice were prepared and subsequently stimulated with lipopolysaccharide (LPS) alone or LPS plus enalapril. The effect of enalapril on NF-κB signaling was examined by western blotting to detect IκBα phosphorylation/degradation; an electrophoretic mobility shift assay (EMSA) to assess the DNA binding activity of NF-κB; and ELISAs to qualify IL-8, TNF-α, IL-6, and IL-12 production. In in vivo studies, dextran sulfate sodium (DSS)-induced acute colitis in wild-type mice and chronic colitis in IL-10−/− mice were treated with or without enalapril. Colitis was quantified by histologic scoring, and the phosphorylation of IκBα in the colonic mucosa was assessed using immunohistochemistry.

Key findings

Enalapril significantly inhibited LPS-induced IκBα phosphorylation/degradation, NF-κB binding activity, and pro-inflammatory cytokine production in both IEC and peritoneal macrophages. The administration of enalapril significantly reduced the severity of colitis, as assessed based on histology in both murine colitis models. Furthermore, in colon tissue, the up-regulation of IκBα phosphorylation with colitis induction was attenuated in enalapril-treated mice.

Significance

Enalapril may block the NF-κB signaling pathway, inhibit the activation of IECs and macrophages, and attenuate experimental murine colitis by down-regulating IκBα phosphorylation. These findings suggest that enalapril is a potential therapeutic agent for inflammatory bowel disease.  相似文献   

14.
15.
The purpose of this study was to alleviate liver disturbance by applying polysaccharides from Dicliptera chinensis (DCP) to act on the adenosine monophosphate–activated protein kinase/ nuclear factor erythroid 2-related factor 2 (AMPK/ Nrf2) oxidative stress pathway and the Toll-like receptor 4 (TLR-4)/ nuclear factor kappa-B (NF-κB) inflammatory pathway and to establish an in vivo liver disturbance model using male C57BL/6J and TLR-4 knockout (−/−) mice. For this, we evaluated the expression levels of SREBP-1 and Nrf2 after silencing the expression of AMPK using siRNA technology. Our results show that with regard to the TLR-4/ NF-κB inflammatory pathway, DCP inhibits TLR-4, up-regulates the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), reduces the expression of phospho(p)-NF-κB and leads to the reduction of downstream inflammatory factors, such as tumour necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1β, thereby inhibiting the inflammatory response. Regarding the AMPK/ Nrf2 oxidative stress pathway, DCP up-regulates the expression of p-AMPK and Nrf2, in addition to regulating glucose and lipid metabolism, oxidative stress and ameliorating liver disturbance symptoms. In summary, our study shows that DCP alleviates liver disturbances by inhibiting mechanisms used during liver inflammation and oxidative stress depression, which provides a new strategy for the clinical treatment of liver disturbance.  相似文献   

16.
ABSTRACT

Oxidized low-density lipoprotein (ox-LDL) was known to induce endothelial cell injury to the progression of atherosclerosis (AS). Sophocarpine (SPC), a compound of sophora alkaloids isolated from the plant Sophora alopecuroides, has been shown to exhibit various pharmacological activities. This study was designed to investigate the protective effect of SPC on ox-LDL-induced endothelial cells and explored its underlying mechanism. Our results show that SPC pre-incubation ameliorated ox-LDL-mediated HAECs cytotoxicity, DNA fragmentation, and apoptosis in a dose-dependent manner. Moreover, SPC significantly downregulated the mRNA or protein expression level of pro-inflammatory mediators (TGF-β, IL-6, IL-1β, TNF-α) and pro-inflammatory vascular adhesion molecules (VCAM-1, ICAM-1, and E-selectin). Mechanistically, SPC pre-treatment downregulated IκBα expression and inhibited translocation of NF-κB in ox-LDL-mediated HAECs, overexpression of NF-κB p65 counteracted the cytoprotective and anti-apoptotic effect of SPC, suggesting that its action is dependent on NF-κB signaling pathway. Collectively, SPC suppresses ox-LDL-induced HAECs injury by inhibiting the NF-κB signaling pathway.  相似文献   

17.
Skeletal tissue homeostasis is maintained via the balance of osteoclastic bone resorption and osteoblastic bone formation. Autophagy and apoptosis are essential for the maintenance of homeostasis and normal development in cells and tissues. We found that Bax-interacting factor 1 (Bif-1/Endophillin B1/SH3GLB1), involving in autophagy and apoptosis, was upregulated during osteoclastogenesis. Furthermore, mature osteoclasts expressed Bif-1 in the cytosol, particularly the perinuclear regions and podosome, suggesting that Bif-1 regulates osteoclastic bone resorption. Bif-1-deficient (Bif-1 −/−) mice showed increased trabecular bone volume and trabecular number. Histological analyses indicated that the osteoclast numbers increased in Bif-1 −/− mice. Consistent with the in vivo results, osteoclastogenesis induced by receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) was accelerated in Bif-1 −/− mice without affecting RANKL-induced activation of RANK downstream signals, such as NF-κB and mitogen-activated protein kinases (MAPKs), CD115/RANK expression in osteoclast precursors, osteoclastic bone-resorbing activity and the survival rate. Unexpectedly, both the bone formation rate and osteoblast surface substantially increased in Bif-1 −/− mice. Treatment with β-glycerophosphate (β-GP) and ascorbic acid (A.A) enhanced osteoblastic differentiation and mineralization in Bif-1 −/− mice. Finally, bone marrow cells from Bif-1 −/− mice showed a significantly higher colony-forming efficacy by the treatment with or without β-GP and A.A than cells from wild-type (WT) mice, suggesting that cells from Bif-1 −/− mice had higher clonogenicity and self-renewal activity than those from WT mice. In summary, Bif-1 might regulate bone homeostasis by controlling the differentiation and function of both osteoclasts and osteoblasts (235 words).  相似文献   

18.
Although neuronal Toll-like receptors (TLRs) (e.g., TLR2, TLR3, and TLR7) have been implicated in itch sensation, the roles of keratinocyte TLRs in chronic itch are elusive. Herein, we evaluated the roles of keratinocyte TLR2 and TLR7 in chronic itch under dry skin and psoriasis conditions, which was induced by either acetone-ether-water treatment or 5% imiquimod cream in mice, respectively. We found that TLR2 and TLR7 signaling were significantly upregulated in dry skin and psoriatic skin in mice. Chronic itch and epidermal hyperplasia induced by dry skin or psoriasis were comparably reduced in TLR2 and TLR7 knockout mice. In the dry skin model, the enhanced messenger RNA (mRNA) expression levels of pruritic CXCL1/2, IL-31, IL-33, ST2, IL-6, IL-17A, TNF-α, and IFN-γ were inhibited in TLR2−/− mice, while CXCL2, IL-31, and IL-6 were inhibited in TLR7−/− mice. In psoriasis model, the enhanced mRNA expression levels of pruritic CXCL1/2, IL-31, IL-33, ST2, IL-6, and TNF-α were inhibited in TLR2−/− mice, while CXCL1/2, IL-31, IL-33, ST2, IL-6, IL-17A, and TNF-α were inhibited in TLR7−/− mice. Incubation with Staphylococcus aureus (S. aureus) peptidoglycan (PGN-SA) (a TLR2 agonist), imiquimod (a TLR7 agonist), and miR142-3p (a putative TLR7 agonist) were sufficient to upregulate the expression of pruritic cytokines or chemokines in cultured keratinocyte HaCaT cells. Finally, pharmacological blockade of C-X-C Motif Chemokine Receptor 1/2 and high mobility group box protein 1 dose-dependently attenuated acute and chronic itch in mice. Together, these results indicate that keratinocyte TLR2 and TLR7 signaling pathways are distinctly involved in the pathogenesis of chronic itch.  相似文献   

19.
《Phytomedicine》2014,21(12):1708-1716
PurposeAntrodia camphorata (AC), a highly valued polypore mushroom native only to Taiwan, has been traditionally used as a medicine for the treatment of food and drug intoxication, diarrhea, abdominal pain, hypertension, skin itching, and cancer. In this study, both of solid-state-cultured AC (S-AC) and wood-cultured AC (W-AC) were evaluated the anti-inflammatory effects on hyperoxia-induced lung injury in NF-κB-luciferase+/+ transgenic mice.MethodsThe homozygous transgenic mice (NF-κB-luciferase+/+) were randomly assigned to four groups for treatment (n = 6) including Normoxia/DMSO group, Hyperoxia/DMSO group, Hyperoxia/S-AC group, and Hyperoxia/W-AC group. After 72 h of hyperoxia, we examined the bioluminescence images, reactive oxygen species (ROS), the mRNA and protein expression levels of inflammation factors, and histopathological analyses of the lung tissues.ResultsHyperoxia-induced lung injury significantly increased the generation of ROS, the mRNA levels of IL-6, TNF-α, IL-1β and IL-8, and the protein expression levels of IKKα/β, iNOS and IL-6. Pulmonary edema and alveolar infiltration of neutrophils was also observed in the hyperoxia-induced lung tissue. However, treatment with either S-AC or W-AC obviously decreased hyperoxia-induced generation of ROS and the expression of IL-6, TNF-α, IL-1β, IL-8, IKKα/β and iNOS compared to hyperoxia treatment alone. Lung histopathology also showed that treatment with either S-AC or W-AC significantly reduced neutrophil infiltration and lung edema compared to treatment with hyperoxia treated alone. To find out their major compounds, eburicoic acid and dehydroeburicoic acid were both isolated and identified from S-AC and W-AC by using HPLC, MS, and NMR spectrometry.ConclusionsThese results demonstrated that methanolic extracts both of S-AC and W-AC have excellent anti-inflammatory activities and thus have great potential as a source for natural health products.  相似文献   

20.
ObjectiveAngiopoietin-1 (Ang-1), a secreted protein, mainly regulates angiogenesis. Ang-1 has been shown to promote the development of atherosclerosis, whereas little is known about its effects on lipid metabolism and inflammation in this process.MethodAng-1 was transfected into ApoE−/− mice via lentiviral vector or incubated with THP-1 derived macrophages. Oil red O and HE staining were performed to measure the size of atherosclerotic plaques in ApoE−/− mice. Immunofluorescence was employed to show the expression of target proteins in aorta. [3H] labeled cholesterol was performed to examine the efficiency of cholesterol efflux and reverse cholesterol transport (RCT) both in vivo and vitro. Western blot and qPCR were used to quantify target proteins both in vivo and vitro. ELISA detected the levels of pro-inflammatory cytokines in mouse peritoneal macrophage.ResultsOur data showed that Ang-1 augmented atherosclerotic plaques formation and inhibited cholesterol efflux. The binding of Ang-1 to Tie2 resulted in downregulation of LXRα, ABCA1 and ABCG1 expression via inhibiting the translocation of TFE3 into nucleus. In addition, Ang-1 decreased serum HDL-C levels and reduced reverse cholesterol transport (RCT) in ApoE−/− mice. Furthermore, Ang-1 induced lipid accumulation followed by increasing TNF-α, IL-6, IL-1β,and MCP-1 produced by MPMs, as well as inducing M1 phenotype macrophage marker iNOS and CD86 expression in aorta of ApoE−/− mice.ConclusionAng-1 has an adverse effect on cholesterol efflux by decreasing the expression of ABCA1 and ABCG1 via Tie2/TFE3/LXRα pathway, thereby promoting inflammation and accelerating atherosclerosis progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号