首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Direct intercellular communication mediated by gap junctions (GJs) is a hallmark of normal cell and tissue physiology. In addition, GJs significantly contribute to physical cell-cell adhesion. Clearly, these cellular functions require precise modulation. Typically, GJs represent arrays of hundreds to thousands of densely packed channels, each one assembled from two half-channels (connexons), that dock head-on in the extracellular space to form the channel arrays that link neighboring cells together. Interestingly, docked GJ channels cannot be separated into connexons under physiological conditions, posing potential challenges to GJ channel renewal and physical cell-cell separation. We described previously that cells continuously-and effectively after treatment with natural inflammatory mediators-internalize their GJs in an endo-/exocytosis process that utilizes clathrin-mediated endocytosis components, thus enabling these critical cellular functions. GJ internalization generates characteristic cytoplasmic double-membrane vesicles, described and termed earlier annular GJs (AGJs) or connexosomes. Here, using expression of the major fluorescent-tagged GJ protein, connexin 43 (Cx43-GFP/YFP/mApple) in HeLa cells, analysis of endogenously expressed Cx43, ultrastructural analyses, confocal colocalization microscopy, pharmacological and molecular biological RNAi approaches depleting cells of key-autophagic proteins, we provide compelling evidence that GJs, following internalization, are degraded by autophagy. The ubiquitin-binding protein p62/sequestosome 1 was identified in targeting internalized GJs to autophagic degradation. While previous studies identified proteasomal and endo-/lysosomal pathways in Cx43 and GJ degradation, our study provides novel molecular and mechanistic insights into an alternative GJ degradation pathway. Its recent link to health and disease lends additional importance to this GJ degradation mechanism and to autophagy in general.  相似文献   

2.
Direct intercellular communication mediated by gap junctions (GJs) is a hallmark of normal cell and tissue physiology. In addition, GJs significantly contribute to physical cell-cell adhesion. Clearly, these cellular functions require precise modulation. Typically, GJs represent arrays of hundreds to thousands of densely packed channels, each one assembled from two half-channels (connexons), that dock head-on in the extracellular space to form the channel arrays that link neighboring cells together. Interestingly, docked GJ channels cannot be separated into connexons under physiological conditions, posing potential challenges to GJ channel renewal and physical cell-cell separation. We described previously that cells continuously—and effectively after treatment with natural inflammatory mediators—internalize their GJs in an endo-/exocytosis process that utilizes clathrin-mediated endocytosis components, thus enabling these critical cellular functions. GJ internalization generates characteristic cytoplasmic double-membrane vesicles, described and termed earlier annular GJs (AGJs) or connexosomes. Here, using expression of the major fluorescent-tagged GJ protein, connexin 43 (Cx43-GFP/YFP/mApple) in HeLa cells, analysis of endogenously expressed Cx43, ultrastructural analyses, confocal colocalization microscopy, pharmacological and molecular biological RNAi approaches depleting cells of key-autophagic proteins, we provide compelling evidence that GJs, following internalization, are degraded by autophagy. The ubiquitin-binding protein p62/sequestosome 1 was identified in targeting internalized GJs to autophagic degradation. While previous studies identified proteasomal and endo-/lysosomal pathways in Cx43 and GJ degradation, our study provides novel molecular and mechanistic insights into an alternative GJ degradation pathway. Its recent link to health and disease lends additional importance to this GJ degradation mechanism and to autophagy in general.  相似文献   

3.
Follicle-stimulating hormone is the major regulator of growth and development of antral follicles in the ovary. Granulosa cells (GCs) in these follicles are coupled via gap junctions (GJs) consisting of connexin 43 (Cx 43). Because we and others have found that Cx 43 and GJs, respectively, are more abundant in large antral follicles compared with small antral and preantral follicles, we hypothesized that FSH may control Cx 43 gene expression, GJ formation, and intercellular communication. To directly address these points, we chose a rat GC line (GFSHR-17) expressing the FSH receptor and the Cx 43 gene. The functionality of FSH receptors was shown by the effects of porcine FSH, namely cell rounding, reduced cellular proliferation, and stimulation of progesterone production of GFSHR-17 cells, which are effects that were detectable within hours. Treatment with FSH also statistically significantly increased Cx 43 mRNA levels, as shown after 6 to 9 h in Northern blots. These effects were antedated by altered GJ communication, which was observed within seconds. Using a single-cell/whole-cell patch clamp technique, we showed that FSH rapidly and reversibly enhanced electrical cell coupling of GFSHR-17 cells. Increased GJ communication was associated with statistically significantly decreased phosphorylation of Cx 43, which was observed within 10 min after FSH addition, during immunoprecipitation experiments. Our results demonstrate, to our knowledge for the first time, that the gonadotropin FSH acutely and directly stimulates intercellular communication of GFSHR-17 cells through existing GJs. Moreover, FSH also increases levels of Cx 43 mRNA. These changes are associated with reduced proliferation and enhanced differentiation of GFSHR-17 cells. In vivo factors in addition to FSH may be involved in the regulation of GJ/GJ communication between GCs in the follicle, but our results suggest that improved cell-to-cell coupling, enhanced Cx 43 gene expression, and possibly, formation of new GJs are direct consequences of FSH receptor activation and may antedate and/or initiate the pivotal effects of FSH on GCs.  相似文献   

4.
Cadherins have been thought to facilitate the assembly of connexins (Cxs) into gap junctions (GJs) by enhancing cell-cell contact, however the molecular mechanisms involved in this process have remained unexplored. We examined the assembly of GJs composed of Cx43 in isogenic clones derived from immortalized and nontransformed rat liver epithelial cells that expressed either epithelial cadherin (E-Cad), which curbs the malignant behavior of tumor cells, or neuronal cadherin (N-Cad), which augments the invasive and motile behavior of tumor cells. We found that N-cad expression attenuated the assembly of Cx43 into GJs, whereas E-Cad expression facilitated the assembly. The expression of N-Cad inhibited GJ assembly by causing endocytosis of Cx43 via a nonclathrin-dependent pathway. Knock down of N-Cad by ShRNA restored GJ assembly. When both cadherins were simultaneously expressed in the same cell type, GJ assembly and disassembly occurred concurrently. Our findings demonstrate that E-Cad and N-Cad have opposite effects on the assembly of Cx43 into GJs in rat liver epithelial cells. These findings imply that GJ assembly and disassembly are the down-stream targets of the signaling initiated by E-Cad and N-Cad, respectively, and may provide one possible explanation for the disparate role played by these cadherins in regulating cell motility and invasion during tumor progression and invasion.  相似文献   

5.
Connexin 43 (Cx43) is a gap junction (GJ) protein widely expressed in mammalian tissues that mediates cell-to-cell coupling. Intercellular channels comprising GJ aggregates form from docking of paired connexons, with one each contributed by apposing cells. Zonula occludens-1 (ZO-1) binds the carboxy terminus of Cx43, and we have previously shown that inhibition of the Cx43/ZO-1 interaction increases GJ size by 48 h. Here we demonstrated that increases in GJ aggregation occur within 2 h (~Cx43 half-life) following disruption of Cx43/ZO-1. Immunoprecipitation and Duolink protein-protein interaction assays indicated that inhibition targets ZO-1 binding with Cx43 in GJs as well as connexons in an adjacent domain that we term the "perinexus." Consistent with GJ size increases being matched by decreases in connexons, inhibition of Cx43/ZO-1 reduced the extent of perinexal interaction, increased the proportion of connexons docked in GJs relative to undocked connexons in the plasma membrane, and increased GJ intercellular communication while concomitantly decreasing hemichannel-mediated membrane permeance in contacting, but not noncontacting, cells. ZO-1 small interfering RNA and overexpression experiments verified that loss and gain of ZO-1 function govern the transition of connexons into GJs. It is concluded that ZO-1 regulates the rate of undocked connexon aggregation into GJs, enabling dynamic partitioning of Cx43 channel function between junctional and proximal nonjunctional domains of plasma membrane.  相似文献   

6.
Regulation of gap junction (GJ) organization is critical for proper function of excitable tissues such as heart and brain, yet mechanisms that govern the dynamic patterning of GJs remain poorly defined. Here, we show that zonula occludens (ZO)-1 localizes preferentially to the periphery of connexin43 (Cx43) GJ plaques. Blockade of the PDS95/dlg/ZO-1 (PDZ)-mediated interaction between ZO-1 and Cx43, by genetic tagging of Cx43 or by a membrane-permeable peptide inhibitor that contains the Cx43 PDZ-binding domain, led to a reduction of peripherally associated ZO-1 accompanied by a significant increase in plaque size. Biochemical data indicate that the size increase was due to unregulated accumulation of gap junctional channels from nonjunctional pools, rather than to increased protein expression or decreased turnover. Coexpression of native Cx43 fully rescued the aberrant tagged-connexin phenotype, but only if channels were composed predominately of untagged connexin. Confocal image analysis revealed that, subsequent to GJ nucleation, ZO-1 association with Cx43 GJs is independent of plaque size. We propose that ZO-1 controls the rate of Cx43 channel accretion at GJ peripheries, which, in conjunction with the rate of GJ turnover, regulates GJ size and distribution.  相似文献   

7.
Gap junction (GJ) mediates intercellular communication through linked hemichannels from each of two adjacent cells. Using human and mouse models, we show that connexin 43 (Cx43), the main GJ protein in the immune system, was recruited to the immunological synapse during T cell priming as both GJs and stand-alone hemichannels. Cx43 accumulation at the synapse was Ag specific and time dependent, and required an intact actin cytoskeleton. Fluorescence recovery after photobleaching and Cx43-specific inhibitors were used to prove that intercellular communication between T cells and dendritic cells is bidirectional and specifically mediated by Cx43. Moreover, this intercellular cross talk contributed to T cell activation as silencing of Cx43 with an antisense or inhibition of GJ docking impaired intracellular Ca(2+) responses and cytokine release by T cells. These findings identify Cx43 as an important functional component of the immunological synapse and reveal a crucial role for GJs and hemichannels as coordinators of the dendritic cell-T cell signaling machinery that regulates T cell activation.  相似文献   

8.
Gap junctions (GJs) traverse apposing membranes of neighboring cells to mediate intercellular communication by passive diffusion of signaling molecules. We have shown previously that cells endocytose GJs utilizing the clathrin machinery. Endocytosis generates cytoplasmic double-membrane vesicles termed annular gap junctions or connexosomes. However, the signaling pathways and protein modifications that trigger GJ endocytosis are largely unknown. Treating mouse embryonic stem cell colonies – endogenously expressing the GJ protein connexin43 (Cx43) – with epidermal growth factor (EGF) inhibited intercellular communication by 64% and activated both, MAPK and PKC signaling cascades to phosphorylate Cx43 on serines 262, 279/282, and 368. Upon EGF treatment Cx43 phosphorylation transiently increased up to 4-fold and induced efficient (66.4%) GJ endocytosis as evidenced by a 5.9-fold increase in Cx43/clathrin co-precipitation.  相似文献   

9.
Renal tubular cell injury induced by calcium oxalate (CaOx) is a critical initial stage of kidney stone formation. Theaflavin (TF) has been known for its strong antioxidative capacity; however, the effect and molecular mechanism of TF against oxidative stress and injury caused by CaOx crystal exposure in kidneys remains unknown. To explore the potential function of TF on renal crystal deposition and its underlying mechanisms, experiments were conducted using a CaOx nephrocalcinosis mouse model established by glyoxylate intraperitoneal injection, and HK-2 cells were subjected to calcium oxalate monohydrate (COM) crystals, with or without the treatment of TF. We discovered that TF treatment remarkably protected against CaOx-induced kidney oxidative stress injury and reduced crystal deposition. Additionally, miR-128-3p expression was decreased and negatively correlated with SIRT1 level in mouse CaOx nephrocalcinosis model following TF treatment. Moreover, TF suppressed miR-128-3p expression and further abolished its inhibition on SIRT1 to attenuate oxidative stress in vitro. Mechanistically, TF interacted with miR-128-3p and suppressed its expression. In addition, miR-128-3p inhibited SIRT1 expression by directly binding its 3''-untranslated region (UTR). Furthermore, miR-128-3p activation partially reversed the acceerative effect of TF on SIRT1 expression. Taken together, TF exhibits a strong nephroprotective ability to suppress CaOx-induced kidney damage through the recovery of the antioxidant defense system regulated by miR-128-3p/SIRT1 axis. These findings provide novel insights for the prevention and treatment of renal calculus.  相似文献   

10.
The differentiated phenotype of renal tubular epithelial cell exerts significant effect on crystal adherence. Peroxisome proliferator-activated receptor γ (PPARγ) has been shown to be critical for the regulation of cell transdifferentiation in many physiological and pathological conditions; however, little is known about its role in kidney stone formation. In the current study, we found that temporarily high oxalate concentration significantly decreased PPARγ expression, induced Madin Darby Canine Kidney cell dedifferentiation, and prompted subsequent calcium oxalate (CaOx) crystal adhesion in vitro. Furthermore, cell redifferentiation after the removal of the high oxalate concentration, along with a decreasing affinity to crystals, was an endogenic PPARγ-dependent process. In addition, the PPARγ antagonist GW9662, which can depress total-PPARγ expression and activity, enhanced cell dedifferentiation induced by high oxalate concentration and inhibited cell redifferentiation after removal of the high oxalate concentration. These effects were partially reversed by the PPARγ agonist 15d-PGJ2. Similar results were observed in animals that suffered from temporary hyperoxaluria followed by a recovery period. The active crystal-clearing process occurs through the transphenotypical morphology of renal tubular epithelial cells, reflecting cell transdifferentiation during the recovery period. However, GW9662 delayed cell redifferentiation and increased the secondary temporary crystalluria-induced crystal retention. This detrimental effect was partially reversed by 15d-PGJ2. Taken together, our results revealed that endogenic PPARγ activity plays a vital regulatory role in crystal clearance, subsequent crystal adherence, and CaOx stone formation via manipulating the transdifferentiation of renal tubular epithelial cells.  相似文献   

11.
Erectile dysfunction (ED) is the most common sexual disorder that men report to healthcare providers. Gap junctions (GJs) are thought to be responsible for synchronous shrinkage of corpus cavernosum smooth muscle cells (CCSMCs), and play thus an important role in the maintenance of an erection. Hypoxia has been suggested as a pathological mechanism underlying ED. Here we demonstrate that hypoxia increased the expression of platelet-derived growth factor (PDGF) and the main GJ component connexin (Cx)43 in CCSMCs. Inhibiting PDGF receptor (PDGFR) activity decreased Cx43 expression. Treatment with different concentrations of PDGF increased the levels of phosphorylated protein kinase B (AKT), β-catenin, and Cx43, whereas inhibition of PDGFR or activation of phosphatidylinositol 3 kinase (PI3K)/AKT signaling altered β-catenin and Cx43 expression. Meanwhile, silencing β-catenin resulted in the downregulation of Cx43. These results demonstrate that PDGF secretion by CCSMCs and vascular endothelial cells is enhanced under hypoxic conditions, leading to increased Cx43 expression through PI3K/AKT/β-catenin signaling and ultimately affecting GJ function in ED. Thus, targeting this pathway is a potential therapeutic strategy for the treatment of ED.  相似文献   

12.
Gap junctions (GJs) are made up of plaques of laterally clustered intercellular channels and the membranes in which the channels are embedded. Arrangement of channels within a plaque determines subcellular distribution of connexin binding partners and sites of intercellular signaling. Here, we report the discovery that some connexin types form plaque structures with strikingly different degrees of fluidity in the arrangement of the GJ channel subcomponents of the GJ plaque. We uncovered this property of GJs by applying fluorescence recovery after photobleaching to GJs formed from connexins fused with fluorescent protein tags. We found that connexin 26 (Cx26) and Cx30 GJs readily diffuse within the plaque structures, whereas Cx43 GJs remain persistently immobile for more than 2 min after bleaching. The cytoplasmic C terminus of Cx43 was required for stability of Cx43 plaque arrangement. We provide evidence that these qualitative differences in GJ arrangement stability reflect endogenous characteristics, with the caveat that the sizes of the GJs examined were necessarily large for these measurements. We also uncovered an unrecognized effect of non-monomerized fluorescent protein on the dynamically arranged GJs and the organization of plaques composed of multiple connexin types. Together, these findings redefine our understanding of the GJ plaque structure and should be considered in future studies using fluorescent protein tags to probe dynamics of highly ordered protein complexes.  相似文献   

13.
Zonula occludens (ZO)-1 is emerging as a central player in the control of gap junction (GJ) dynamics. Previously the authors reported that ZO-1 localizes preferentially to the periphery of Cx43 GJs. How ZO-1 arrives at GJ edges is unknown, but this targeting might involve we established interaction between the Cx43 C-terminus and the PDZ2 domain of ZO-1. Here the show that despite blocking the canonical PDZ2-mediated interaction by fusion of GFP to the C-terminus of Cx43, ZO-1 continued to target to domains juxtaposed with the edges of GJs comprised solely of tagged Cx43. This edge-association was not abolished by deletion of PDZ2 from ZO-1, as mutant ZO-1 also targeted to the periphery of GJs composed of either tagged or untagged Cx43. Additionally, ZO-2 was found colocalized with ZO-1 at GJ edges. These data demonstrate that ZO-1 targets to GJ edges independently of several known PDZ2-mediated interactions, including ZO-1 homodimerization, heterodimerization with ZO-2, and direct ZO-1 binding to the C-terminal residues of Cx43.  相似文献   

14.
Gap junctions (GJs) exhibit a complex modus of assembly and degradation to maintain balanced intercellular communication (GJIC). Several growth factors, including vascular endothelial growth factor (VEGF), have been reported to disrupt cell–cell junctions and abolish GJIC. VEGF directly stimulates VEGF-receptor tyrosine kinases on endothelial cell surfaces. Exposing primary porcine pulmonary artery endothelial cells (PAECs) to VEGF for 15 min resulted in a rapid and almost complete loss of connexin43 (Cx43) GJs at cell–cell appositions and a concomitant increase in cytoplasmic, vesicular Cx43. After prolonged incubation periods (60 min), Cx43 GJs reformed and intracellular Cx43 were restored to levels observed before treatment. GJ internalization correlated with efficient inhibition of GJIC, up to 2.8-fold increased phosphorylation of Cx43 serine residues 255, 262, 279/282, and 368, and appeared to be clathrin driven. Phosphorylation of serines 255, 262, and 279/282 was mediated by MAPK, whereas serine 368 phosphorylation was mediated by PKC. Pharmacological inhibition of both signaling pathways significantly reduced Cx43 phosphorylation and GJ internalization. Together, our results indicate that growth factors such as VEGF activate a hierarchical kinase program—including PKC and MAPK—that induces GJ internalization via phosphorylation of well-known regulatory amino acid residues located in the Cx43 C-terminal tail.  相似文献   

15.
Connexin 43 (Cx43) is a major gap junction (GJ) protein found in many mammalian cell types. The C-terminal (CT) domain of Cx43 has unique characteristics in terms of amino acid (aa) sequence and its length differs from other connexins. This CT domain can be associated with protein partners to regulate GJ assembly and degradation, which results in the direct control of gap junction intercellular communication (GJIC). However, the essential roles of the CT regions involved in these mechanisms have not been fully elucidated. In this study, we aimed to investigate the specific regions of Cx43CT involved in GJ formation and internalization. Wild type Cx43((382aa)) and 10 CT truncated mutants were stably expressed in HeLa cells as GFP or DsRed tagged proteins. First, we found that the deletion of 235-382aa from Cx43 resulted in failure to make GJ and establish GJIC. Second, the Cx43 with 242-382aa CT deletion could form functional GJs and be internalized as annular gap junctions (AGJs). However, the plaques consisting of Cx43 with CT deletions (Δ242-382aa to Δ271-382aa) were longer than the plaques consisting of Cx43 with CT deletions (Δ302-382aa). Third, co-culture experiments of cells expressing wild type Cx43((382)) with cells expressing Cx43CT mutants revealed that the directions of GJ internalization were dependent on the length of the respective CT. Moreover, a specific region, 325-342aa residues of Cx43, played an important role in the direction of GJ internalization. These results showed the important roles of the Cx43 C-terminus in GJ expression and its turnover.  相似文献   

16.
During an initial phase of kidney stone formation, the internalization of calcium oxalate (CaOx) crystals by renal tubular cells has been thought to occur via endocytosis. However, the precise mechanism of CaOx crystal endocytosis remained unclear. In the present study, MDCK renal tubular cells were pretreated with inhibitors specific to individual endocytic pathways, including nystatin (lipid raft/caveolae-mediated), cytochalasin D (actin-dependent or macropinocytosis), and chlorpromazine (CPZ; clathrin-mediated) before exposure to plain (non-labeled), or fluorescence-labeled CaOx monohydrate (COM) crystals. Quantitative analysis by flow cytometry revealed that pretreatment with nystatin and CPZ slightly decreased the crystal internalization, whereas the cytochalasin D pretreatment caused a marked decrease in crystal uptake. Immunofluorescence study and laser-scanning confocal microscopic examination confirmed that the cytochalasin D-pretreated cells had dramatic decrease of the internalized crystals, whereas the total number of crystals interacted with the cells was unchanged (crystals could adhere but were not internalized). These data have demonstrated for the first time that renal tubular cells endocytose COM crystals mainly via macropinocytosis. These novel findings will be useful for further tracking the endocytosed crystals inside the cells during the course of kidney stone formation.  相似文献   

17.
The disruption of the spatial order of electromechanical junctions at myocyte-intercalated disks (ICDs) is a poorly understood characteristic of many cardiac disease states. Here, in vitro and in vivo evidence is provided that zonula occludens-1 (ZO-1) regulates the organization of gap junctions (GJs) and adherens junctions (AJs) at ICDs. We investigated the contribution of ZO-1 to cell-cell junction localization by expressing a dominant-negative ZO-1 construct (DN-ZO-1) in rat ventricular myocytes (VMs). The expression of DN-ZO-1 in cultured neonatal VMs for 72 h reduced the interaction of ZO-1 and N-cadherin, as assayed by colocalization and coimmunoprecipitation, prompting cytoplasmic internalization of AJ and GJ proteins. DN-ZO-1 expression in adult VMs in vivo also reduced N-cadherin colocalization with ZO-1, a phenomenon not observed when the connexin-43 (Cx43)-ZO-1 interaction was disrupted using a mimetic of the ZO-1-binding ligand from Cx43. DN-ZO-1-infected VMs demonstrated large GJs at the ICD periphery and showed a loss of focal ZO-1 concentrations along plaque edges facing the disk interior. Additionally, there was breakdown of the characteristic ICD pattern of small interior and large peripheral GJs. Continuous DN-ZO-1 expression in VMs over postnatal development reduced ICD-associated Cx43 GJs and increased lateralized and cytoplasmic Cx43. We conclude that ZO-1 regulation of GJ localization is via an association with the N-cadherin multiprotein complex and that this is a key determinant of stable localization of both AJs and GJs at the ICD.  相似文献   

18.
Intercellular Ca(2+) wave propagation between vascular smooth muscle cells (SMCs) is associated with the propagation of contraction along the vessel. Here, we characterize the involvement of gap junctions (GJs) in Ca(2+) wave propagation between SMCs at the cellular level. Gap junctional communication was assessed by the propagation of intercellular Ca(2+) waves and the transfer of Lucifer Yellow in A7r5 cells, primary rat mesenteric SMCs (pSMCs), and 6B5N cells, a clone of A7r5 cells expressing higher connexin43 (Cx43) to Cx40 ratio. Mechanical stimulation induced an intracellular Ca(2+) wave in pSMC and 6B5N cells that propagated to neighboring cells, whereas Ca(2+) waves in A7r5 cells failed to progress to neighboring cells. We demonstrate that Cx43 forms the functional GJs that are involved in mediating intercellular Ca(2+) waves and that co-expression of Cx40 with Cx43, depending on their expression ratio, may interfere with Cx43 GJ formation, thus altering junctional communication.  相似文献   

19.
Olfactory ensheathing cells (OECs), a special population of glial cells, are able to synthesise several trophic factors exerting a neuroprotective action and promoting growth and functional recovery in both in vitro and in vivo models. In the present work, we investigated the neuroprotective effects of OEC‐conditioned medium (OEC‐CM) on two different human neuron‐like cell lines, SH‐SY5Y and SK‐N‐SH (neuroblastoma cell lines), under normoxic and hypoxic conditions. In addition, we also focused our attention on the role of connexins (Cxs) in the neuroprotective processes. Our results confirmed OEC‐CM mediated neuroprotection as shown by cell adherence, proliferation and cellular viability analyses. Reduced connexin 43 (Cx43) levels in OEC‐CM compared to unconditioned cells in hypoxic conditions prompted us to investigate the role of Cx43‐Gap junctions (GJs) and Cx43‐hemichannels (HCs) in hypoxic/reoxygenation injury using carbenoxolone (non‐selective GJ inhibitor), ioxynil octanoato (selective Cx43‐GJ inhibitor) and Gap19 (selective Cx43‐HC inhibitor). We found that Cx43‐GJ and Cx43‐HC inhibitors are able to protect SH‐SY5Y and allow to these cultures to overcome the injury. Our findings support the hypothesis that both OEC‐CM and the inhibition of Cx43‐GJs and Cx43‐HCs offer a neuroprotective effect by reducing Cx43‐mediated cell‐to‐cell and cell‐to‐extracellular environment communications.  相似文献   

20.
本研究旨在探讨细胞间黏附分子1 (intercellular cell adhesion molecule-1, ICAM-1)在高钙尿肾结石(genetic hypercalcium renal stones, GHS)大鼠中的表达以及Ca^2+对肾小管上皮细胞ICAM-1的影响。取GHS大鼠和SD大鼠,荧光定量PCR检测肾组织ICAM-1 mRNA表达水平,免疫组化检测ICAM-1蛋白表达。比色法检测大鼠肾组织SOD活力和MDA水平。通过ICAM-1 siRNA转染大鼠肾小管上皮细胞系NRK-52E构建ICAM-1低表达细胞模型,Ca^2+(5 mmol/L)处理NRK-52E细胞,检测细胞SOD活力和MDA水平,通过Western blotting检测细胞ICAM-1蛋白表达水平。荧光定量PCR结果显示,与SD对照组相比,GHS组大鼠肾组织ICAM-1 mRNA水平显著升高,差异具有统计学意义(p<0.01);免疫组化结果显示,ICAM-1蛋白在GHS大鼠肾组织中呈阳性表达;氧化应激检测结果显示,与SD对照组比较,GHS组大鼠肾组织SOD活性显著降低,MDA含量显著升高,差异具有统计学意义(p<0.01)。Western blotting结果显示,与对照组比较,Ca^2+组NRK-52E细胞ICAM-1表达蛋白显著升高,差异具有统计学意义(p<0.01);与Ca^2+处理NC-siRNA组比较,Ca^2+处理ICAM-1 siRNA组NRK-52E细胞ICAM-1表达蛋白显著降低;与ICAM-1 siRNA组NRK-52E细胞比较,Ca^2+处理ICAM-1 siRNA组NRK-52E细胞后ICAM-1表达蛋白水平无显著性变化(p>0.05)。细胞氧化应激检测结果显示,与对照组比较,Ca^2+组NRK-52E细胞SOD活性显著降低,MDA含量显著升高,差异具有统计学意义(p<0.01);与Ca^2+处理NC-siRNA组比较,Ca^2+处理ICAM-1 siRNA组SOD活性显著升高,MDA含量显著降低,差异均具有统计学意义(p<0.01);与ICAM-1 siRNA组NRK-52E细胞比较,Ca^2+处理ICAM-1 siRNA组NRK-52E细胞SOD活力和MDA含量无显著性变化(p>0.05)。ICAM-1在GHS肾小管上皮细胞中高表达,Ca^2+诱导肾小管上皮细胞ICAM-1高表达,促进细胞氧化应激水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号