首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Fibroblast growth factor receptor (FGFR) signaling is pivotal in the regulation of neurogenesis, neuronal differentiation and survival, and synaptic plasticity both during development and in adulthood. In order to develop low molecular weight agonists of FGFR, seven peptides, termed hexafins, corresponding to the β6‐β7 loop region of the FGF 1, 2, 3, 8, 9, 10, and 17, were synthesized. This region shares a homologous amino acid sequence with the FG‐loop region of the second fibronectin Type III module of the neural cell adhesion molecule (NCAM) that binds to the FGFR. Hexafins were shown by surface plasmon resonance to bind to FGFR1‐IIIc‐Ig2‐3 and FGFR2‐IIIb‐Ig2‐3. The heparin analog sucrose octasulfate inhibited hexafin binding to FGFR1‐IIIc‐Ig2‐3 indicating overlapping binding sites. Hexafin‐binding to FGFR1‐IIIc resulted in receptor phosphorylation, but inhibited FGF1‐induced FGFR1 phosphorylation, indicating that hexafins act as partial agonists. Hexafin2, 3, 8, 10, and 17 (but not 1 or 9) induced neurite outgrowth from cerebellar granule neurons (CGNs), an effect that was abolished by two inhibitors of FGFR, SU5402 and inositol hexaphosphate (IP6) and a diacylglycerol lipase inhibitor, RHC‐80267. The neuritogenic effects of selected hexafins could also be inhibited by FGF1 which by itself did not induce neurite outgrowth. Moreover, hexafin1, 3, 9, 10, and 17 (but not 2 or 8) promoted survival of CGNs induced to undergo apoptosis. Thus, selected hexafins induced neuronal differentiation and survival, making them promising pharmacological tools for the study of functional FGFR regulation in development of the nervous system. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

2.
The neural cell adhesion molecule (NCAM) has been reported to stimulate neuritogenesis either via nonreceptor tyrosine kinases or fibroblast growth factor (FGF) receptor. Here we show that lipid raft association of NCAM is crucial for activation of the nonreceptor tyrosine kinase pathway and induction of neurite outgrowth. Transfection of hippocampal neurons of NCAM-deficient mice revealed that of the three major NCAM isoforms only NCAM140 can act as a homophilic receptor that induces neurite outgrowth. Disruption of NCAM140 raft association either by mutation of NCAM140 palmitoylation sites or by lipid raft destruction attenuates activation of the tyrosine focal adhesion kinase and extracellular signal-regulated kinase 1/2, completely blocking neurite outgrowth. Likewise, NCAM-triggered neurite outgrowth is also completely blocked by a specific FGF receptor inhibitor, indicating that cosignaling via raft-associated kinases and FGF receptor is essential for neuritogenesis.  相似文献   

3.
The protein p42IP4 (aka Centaurin α-1) is highly enriched in the brain and has specific binding sites for the membrane lipid phosphatidylinositol 3,4,5-trisphosphate and the soluble messenger inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4; IP4). p42IP4 shuttles between plasma membrane, cytosol and cell nucleus. However, the molecular function of p42IP4 is still largely unclear. Here, we report a novel interaction partner for p42IP4, Ran binding protein in microtubule-organizing center (RanBPM). RanBPM is ubiquitously expressed and seems to act as scaffolding and modulator protein. In our studies, we established this interaction in vitro and in vivo . The in vivo interaction was demonstrated with endogenous RanBPM from rat brain. Both proteins co-localize in transfected HEK 293 cells. We could show that the interaction does not require additional proteins. D-Ins(1,3,4,5)P4, a specific ligand for p42IP4, is a concentration-dependent and stereoselective inhibitor of this interaction; the l -isoform is much less effective. We found that mainly the SPRY domain of RanBPM mediates the p42IP4-RanBPM association. The ARFGAP domain of p42IP4 is important for the interaction, without being the only interaction site. Recently, p42IP4 and RanBPM were shown to be involved in dendritic differentiation. Thus, we hypothesize that RanBPM could act as a modulator together with p42IP4 in synaptic plasticity.  相似文献   

4.
Neuroplastin-65 (Np65) is a brain-specific cell adhesion molecule belonging to the immunoglobulin superfamily. Homophilic trans-interaction of Np65 mediates adhesion between cells and modulates synaptic plasticity. This interaction solely occurs through the first immunoglobulin (Ig) module of Np65, but the exact binding mechanism has not yet been elucidated. In this study, we identify the homophilic binding motif of Np65 and show that a synthetic peptide modeled after this motif, termed enplastin, binds to Np65. We demonstrate that both Np65- and enplastin-induced intracellular signaling depends on fibroblast growth factor receptor, p38 mitogen-activated protein kinase, Ca(2+) /calmodulin-dependent protein kinase, and cytoplasmic Ca(2+) concentration. In addition, we show that interference with Np65 homophilic binding by enplastin has an inhibitory effect on Np65-mediated neurite outgrowth in vitro and on the initial phase of spatial learning in rats.  相似文献   

5.
6.
In the present study, we investigated the selective role of protein kinase C (PKC) isoforms on neurite outgrowth of the GT1 hypothalamic neurons using several PKC isoform-selective inhibitors and transfection-based expression of enhanced green fluorescence protein (EGFP)-fused PKC isoforms. 12-O-Tetradecanoylphorbol-13-acetate (TPA) induced neurite outgrowth and growth cone formation, effects that were blocked by GF 109203X (a PKC inhibitor), safingolTM(a PKCalpha-selective inhibitor), but not by rottlerinTM (a PKCdelta-selective inhibitor), indicating that PKCalpha may be selectively involved in neurite outgrowth and cytoskeletal changes of filamentous actin and beta-tubulin. To define the differential localization of PKC isoforms, EGFP-tagged PKCalpha, PKCgamma, and PKCdelta were transfected into GT1 neuronal cells. TPA treatment induced relocalization of PKCalpha-EGFP to growth cones and cell-cell adhesion sites, PKCgamma-EGFP to the nucleus, and PKCdelta-EGFP to the membrane ruffle, respectively. An EGFP chimera of the catalytic domain of PKCalpha (PKCalpha-Cat-EGFP), the expression of which was inducible by doxycycline, was employed to directly ascertain the effect of PKCalpha enzymatic activity on neurite outgrowth of GT1 cells. Transient transfection of PKCalpha-Cat-EGFP alone increased the neurite-outgrowth and doxycycline treatment further augmented the number of neurite-containing cells. We also examined the involvement of the extracellular signal-regulated kinase (ERK) MAP kinase in TPA-induced neurite outgrowth. TPA treatment increased phosphorylated ERK MAP kinase, but not p38 MAP kinase. Specific inhibition of PKCalpha with safingol blocked the phosphorylation of ERK induced by TPA. More importantly, both neurite outgrowth and phosphorylation of ERK by TPA were blocked by PD 098059, a specific inhibitor of MEK (MAP kinase/ERK kinase-1), but not by SB203580, a specific inhibitor of p38 MAP kinase. These results demonstrate that PKCalpha isoform-specific activation is involved in neurite outgrowth of GT1 hypothalamic neuronal cells via ERK, but not the p38 MAP kinase signal pathway.  相似文献   

7.
Activation of integrin receptors in neurons can promote cell survival and synaptic plasticity, but the underlying signal transduction pathway(s) is unknown. We report that integrin signaling prevents apoptosis of embryonic hippocampal neurons by a mechanism involving integrin-linked kinase (ILK) that activates Akt kinase. Activation of integrins using a peptide containing the amino acid sequence EIKLLIS derived from the alpha chain of laminin protected hippocampal neurons from apoptosis induced by glutamate or staurosporine, and increased Akt activity in a beta1 integrin-dependent manner. Transfection of neurons with a plasmid encoding dominant negative Akt blocked the protective effect of the integrin-activating peptide, as did a chemical inhibitor of Akt. Although inhibitors of phosphoinositide-3 (PI3) kinase blocked the protective effect of the peptide, we found no increase in PI3 kinase activity following integrin stimulation suggesting that PI3 kinase was necessary for Akt activity but was not sufficient for the increase in Akt activity following integrin activation. Instead, we show a requirement for ILK in integrin receptor-induced Akt activation. ILK was activated following integrin stimulation and dominant negative ILK blocked integrin-mediated Akt activation and cell survival. Activation of ILK and Akt were also required for neuroprotection by substrate-associated laminin. These results establish a novel pathway that signals cell survival in neurons in response to integrin receptor activation.  相似文献   

8.
Monoclonal M6 antibody binds to the surface of murine central nervous system neurons as well as to apical surfaces of epithelial cells in the choroid plexus and proximal tubules of the kidney. M6 antigen is expressed in the central nervous system as early as embryonic day 10, most strongly in the marginal zone of the neural tube, and remains detectable in adulthood. IgG or Fab fragments of M6 antibody interfere with the extension of neurites by cultured cerebellar neurons. Effects of the antibody on neurite extension are readily detectable after 24 h. No reduction of cell viability is detected during the first 3 days of antibody treatment. Cultures maintained in the presence of antibody for longer than 5 days exhibit reduced viability of neurons. This reduction in long-term viability in the presence of M6 antibody is largely avoided when 25 mM KCl is included in the culture medium. The antibody-mediated perturbation of neurite outgrowth is not blocked by the presence of elevated KCl. The unusually short and flattened appearance of neurites in these cultures suggests that the M6 antibody selectively affects neurite extension. Time-lapse cinematography of anti-M6-treated neurons reveals no apparent effect on movement of lamellipodia and filopdia of growth cones. Only the overall extension of the neurite appears to be inhibited. M6 antigen is a 35 kD glycoprotein that can be isolated from a deoxycholate- (DOC) solubilized membrane fraction from adult mouse brain.  相似文献   

9.
10.
Two clonal immortalized neurons designated CL8c47 and CL8a5.2 were established by somatic cell fusion between a hypoxanthine phosphoribosyltransferase (HPRT?) deficient neuroblastoma N18TG2 and newborn mouse cerebellar/brain stem neurons. In the serum-containing medium without extra differentiating agents, both clones exhibited a morphology of differentiated neurons. They contained high levels of glutamate but no gamma-aminobutyric acid (GABA). The CL8a5.2 clone synthesized choline aceryltransferase and serotonin. In immunocytochemical studies, both clones expressed 200 kD neurofilament protein neuron-specific enolase, microtubule-associated protein 2 (MAP2), tau protein, neuronal cell adhesion molecule (N-CAM), HNK-1, Thy-1.2, saxitoxin-binding sodium channel protein, and glutamate. Synaptophysin immunoreactivity was identified in the neuritic terminals of CL8c4.7 cells. Most of these antigens were barely detectable on N18TG2 cells. Electrophysiologically, both clones generated action potentials in response to electrical stimuli. The hybrid clones that express characteristics of differentiated neurons derived from the cerebellar and brain stem regions might be invaluable for the study of the molecular basis of neuronal differentiation and degeneration in these regions. © 1992 John Wiley & Sons, Inc.  相似文献   

11.
The effect of an anticoagulant and cytoprotector blood serine proteinase--activated protein C (APC)--on survival of cultured hippocampal and cortical neurons under conditions of glutamate-induced excitotoxicity has been studied. Low concentrations of APC (0.01-10 nM) did not cause neuron death, but in the narrow range of low concentrations APC twofold and stronger decreased cell death caused by glutamate toxicity. High concentrations of APC (>50 nM) induced the death of hippocampal neurons similarly to the toxic action of glutamate. The neuroprotective effect of APC on the neurons was mediated by type 1 proteinase-activated receptor (PAR1), because the inactivation of the enzyme with phenylmethylsulfonyl fluoride or PAR1 blockade by a PAR1 peptide antagonist ((Tyr1)-TRAP-7) prevented the protective effect of APC. Moreover, APC inhibited the proapoptotic effect of 10 nM thrombin on the neurons. Geldanamycin, a specific inhibitor of heat shock protein Hsp90, completely abolished the antiapoptotic effect of 0.1 nM APC on glutamate-induced cytotoxicity in the hippocampal neurons. Thus, APC at low concentrations, activating PAR1, prevents the death of hippocampal and cortical neurons under conditions of glutamate excitotoxicity.  相似文献   

12.
Autophagy is an important process which plays a key role in cellular homeostasis by degrading cytoplasmic components in the lysosomes, which facilitates recycling. Alterations to normal autophagy have been linked to excitotoxicity, but the mechanisms governing its signal transduction remain unclear. The aim of this study was to explore the role of autophagy in neuronal excitotoxic death by delivering small interfering RNA (siRNA) to rat cortical neurons, using a dendrimer to silence the autophagy-related gene 6 (beclin 1) and to determine the role of autophagy in excitotoxicity. We have found that the dendrimer is very efficient to deliver siRNA to rat cortical neurons, leading to almost complete removal of the target protein Beclin 1. In addition, NMDA increases autophagy markers, such as the protein levels of Beclin 1, the microtubule-associated light chain 3 (LC3) B-II/LC3B-I ratio, and monodansylcadaverine (MDC) labeling in rat cortical neurons. Moreover, NMDA also increases the formation of autophagosomes observed under a transmission electron microscope. Silencing beclin 1 expression blocked NMDA-induced autophagy. Moreover, Beclin 1 removal potentiated NMDA-induced neuronal death indicating that autophagy plays a protective role during excitotoxicity and suggesting that targeting autophagy might be a helpful therapeutic strategy in neurodegenerative diseases.  相似文献   

13.
The rat pheochromocytoma PC12 cell line has been an invaluable model system for studying neuritogenesis. Nerve growth factor (NGF) elicits multiple aspects of neurite outgrowth in PC12 cells. It is therefore difficult to dissect and assign an individual signaling pathway to each stage of neuritogenesis. We have recently reported the isolation of a variant PC12 cell line, PC12-N1 (N1), which spontaneously extends neuritic processes and exhibits an increased sensitivity to NGF. Here, we show that, under different culture conditions, the cells display three distinct phases of neuritogenesis consisting of neurite initiation, rapid neurite elongation, and a maturation process characterized by the thickening of neurites and increase in cell soma sizes. We demonstrate that signaling through ERK, but not p38 or JNK, is required for the spontaneous neurite initiation and extension. Treatment with low concentrations of NGF induces rapid neurite elongation without affecting neurite branching and cell soma sizes. Such a rapid neurite outgrowth can be blocked by the inhibition of ERK, but not JNK, activities. In the presence of higher concentrations of NGF, the N1 cells undergo further differentiation with many characteristics of mature neurons in culture, e.g. larger cell soma and numerous branches/connections. This process can be completely blocked by inhibiting ERK or JNK activities using specific inhibitors. These results suggest that ERK and JNK signals play different roles in neuritogenesis, and that JNK activity is essential in the late stages of neuritogenesis. Furthermore, our results demonstrate that signaling dosage is important in the activation of a specific pathway, leading to distinctive biological outcomes.  相似文献   

14.
Traumatic spinal cord injury is a common and severe complication after an accident. As we all know that neurite outgrowth of neurons is difficult after a spinal cord injury. Endosome system is associated with cargoes transportation and contributes in promoting the neuronal capability for neurite outgrowth. EH domain-containing protein 1 (EHD1) transports proteins through the endosome system, especially in the recycling endosomes and regulating the neurite outgrowth. In mammalian cells, the involvement of the ubiquitin-proteasome system in endosomal sorting has been well established. Two RING fingers and a DRIL (double RING finger-linked) 1 (Triad1) plays an important role in membrane trafficking and its mutant results in the wrong accumulation of receptors in endosomes and plasma membrane. In this current study, we reasonably integrated the results of the above research and investigated the regulating function of Triad1 to EHD1 following the spinal cord injury. We characterized the upregulated expression and distribution of Triad1 and EHD1 in the neurons after SCI and declared the interaction between Triad1 with EHD1 both in vitro and in vivo. Triad1 regulated the interaction between itself and the full-length or EH domain of EHD1, which influenced the neurite outgrowth of PC12 cells. Our data delineate a novel interaction between Triad1 and EHD1 that may contribute to the regulation of neurite outgrowth for neurons after the spinal cord injury.  相似文献   

15.
The pro‐inflammatory cytokine interleukin‐1β (IL‐1β), whose levels are elevated in the brain in Alzheimer's and other neurodegenerative diseases, has been shown to have both detrimental and beneficial effects on disease progression. In this article, we demonstrate that incubation of mouse primary cortical neurons (mPCNs) with IL‐1β increases the expression of the P2Y2 nucleotide receptor (P2Y2R) and that activation of the up‐regulated receptor with UTP, a relatively selective agonist of the P2Y2R, increases neurite outgrowth. Consistent with the accepted role of cofilin in the regulation of neurite extension, results indicate that incubation of IL‐1β‐treated mPCNs with UTP increases the phosphorylation of cofilin, a response absent in PCNs isolated from P2Y2R?/? mice. Other findings indicate that function‐blocking anti‐αvβ3/5 integrin antibodies prevent UTP‐induced cofilin activation in IL‐1β‐treated mPCNs, suggesting that established P2Y2R/αvβ3/5 interactions that promote G12‐dependent Rho activation lead to cofilin phosphorylation involved in neurite extension. Cofilin phosphorylation induced by UTP in IL‐1β‐treated mPCNs is also decreased by inhibitors of Ca2+/calmodulin‐dependent protein kinase II (CaMKII), suggesting a role for P2Y2R‐mediated and Gq‐dependent calcium mobilization in neurite outgrowth. Taken together, these studies indicate that up‐regulation of P2Y2Rs in mPCNs under pro‐inflammatory conditions can promote cofilin‐dependent neurite outgrowth, a neuroprotective response that may be a novel pharmacological target in the treatment of neurodegenerative diseases.  相似文献   

16.
Neuronal preconditioning is a phenomenon where a previous exposure to a sub‐lethal stress stimulus increases the resistance of neurons towards a second, normally lethal stress stimulus. Activation of the energy stress sensor, AMP‐activated protein kinase (AMPK) has been shown to contribute to the protective effects of ischaemic and mitochondrial uncoupling‐induced preconditioning in neurons, however, the molecular basis of AMPK‐mediated preconditioning has been less well characterized. We investigated the effect of AMPK preconditioning using 5‐aminoimidazole‐4‐carboxamide riboside (AICAR) in a model of NMDA‐mediated excitotoxic injury in primary mouse cortical neurons. Activation of AMPK with low concentrations of AICAR (0.1 mM for 2 h) induced a transient increase in AMPK phosphorylation, protecting neurons against NMDA‐induced excitotoxicity. Analysing potential targets of AMPK activation, demonstrated a marked increase in mRNA expression and protein levels of the anti‐apoptotic BCL‐2 family protein myeloid cell leukaemia sequence 1 (MCL‐1) in AICAR‐preconditioned neurons. Interestingly, over‐expression of MCL‐1 protected neurons against NMDA‐induced excitotoxicity while MCL‐1 gene silencing abolished the effect of AICAR preconditioning. Monitored intracellular Ca2+ levels during NMDA excitation revealed that MCL‐1 over‐expressing neurons exhibited improved bioenergetics and markedly reduced Ca2+ elevations, suggesting a potential mechanism through which MCL‐1 confers neuroprotection. This study identifies MCL‐1 as a key effector of AMPK‐induced preconditioning in neurons.  相似文献   

17.
The Neural Cell Adhesion Molecule (NCAM) plays a crucial role in development of the central nervous system regulating cell migration, differentiation and synaptogenesis. NCAM mediates cell-cell adhesion through homophilic NCAM binding, subsequently resulting in activation of the fibroblast growth factor receptor (FGFR). NCAM-mediated adhesion leads to activation of various intracellular signal transduction pathways, including the Ras-mitogen activated protein kinase (MAPK) and the phosphatidylinositol-3-kinase (PI3K)-Akt pathways. A synthetic peptide derived from the second fibronectin type III module of NCAM, the FGL peptide, binds to and induces phosphorylation of FGFR without prior homophilic NCAM binding. We here present evidence that this peptide is able to mimic NCAM heterophilic binding to the FGFR by inducing neuronal differentiation as reflected by neurite outgrowth through a direct interaction with FGFR in primary cultures of three different neuronal cell types all expressing FGFR subtype 1: dopaminergic, hippocampal and cerebellar granule neurons. Moreover, we show that the FGL peptide promotes neuronal survival upon induction of cell death in the same three cell types. The effects of the FGL peptide are shown to depend on activation of FGFR and the MAPK and PI3K intracellular signalling pathways, all three kinases being necessary for the effects of FGL on neurite outgrowth and neuronal survival.  相似文献   

18.
Neurotrophic factors support the development of motoneurons by several possible mechanisms. Neurotrophins may act as target‐derived factors or as afferent factors derived from the central nervous system (CNS) or sensory ganglia. We tested whether brain‐derived neurotrophic factor (BDNF), neurotrophin 3 (NT‐3), neurotrophin 4 (NT‐4), and glial cell line–derived neurotrophic factor (GDNF) may be target‐derived factors for neurons in the oculomotor (MIII) or trochlear (MIV) nucleus in chick embryos. Radio‐iodinated BDNF, NT‐3, NT‐4, and GDNF accumulated in oculomotor neurons via retrograde axonal transport when the trophic factors were applied to the target. Systemic GDNF rescued oculomotor neurons from developmental cell death, while BDNF and NT‐3 had no effect. BDNF enhanced neurite outgrowth from explants of MIII and MIV nuclei (identified by retrograde labeling in ovo with the fluorescent tracer DiI), while GDNF, NT‐3, and NT‐4 had no effect. The oculomotor neurons were immunoreactive for BDNF and the BDNF receptors p75NTR and trkB. To determine whether BDNF may be derived from its target or may act as an autocrine or paracrine factor, in situ hybridization and deprivation studies were performed. BDNF mRNA expression was detected in eye muscles, but not in CNS sources of afferent innervation to MIII, or the oculomotor complex itself. Injection of trkB fusion proteins in the eye muscle reduced BDNF immunoreactivity in the innervating motoneurons. These data indicate that BDNF trophic support for the oculomotor neurons was derived from their target. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 295–315, 1999  相似文献   

19.
Gastric cancer has become the third most common cancer around the world. In patients with gastric cancer, the 5-year survival rate is still low. However, the mechanism underlying gastric cancer remains largely unknown. As a glycolytic enzyme, enolase 1 (ENO1) is widely expressed in most tissues. The functions of ENO1 have been reported in various types of cancer. Here in this study, we identified that ENO1 promoted the growth of gastric cancer cells through diverse mechanisms. Our immunohistochemical, bioinformatic and Western blot data showed that ENO1 was significantly overexpressed in human gastric cancer cell lines and tissues. The survival analysis revealed that ENO1 overexpression predicted poor survival in the patients suffering gastric cancer. Knockdown of ENO1 expression repressed the rate of proliferation and capacity of colony formation in two human gastric cancer cell lines (MGC-803 and MKN-45). In addition, knockdown of the expression of ENO1 led to the arrest of the cell cycle at the G1 phase and promoted the apoptosis of MKN-45 and MGC-803 cells. The further microarray and bioinformatic analysis revealed that ENO1 regulated the expression of diverse genes, many of which are involved in the progress of cancer. Taken together, our data demonstrated that ENO1 was an oncogene-like factor and might serve as a promising target for the treatment of human gastric cancer.  相似文献   

20.
Cholinergic signaling plays an important role in regulating the growth and regeneration of axons in the nervous system. The α7 nicotinic receptor (α7) can drive synaptic development and plasticity in the hippocampus. Here, we show that activation of α7 significantly reduces axon growth in hippocampal neurons by coupling to G protein‐regulated inducer of neurite outgrowth 1 (Gprin1), which targets it to the growth cone. Knockdown of Gprin1 expression using RNAi is found sufficient to abolish the localization and calcium signaling of α7 at the growth cone. In addition, an α7/Gprin1 interaction appears intimately linked to a Gαo, growth‐associated protein 43, and CDC42 cytoskeletal regulatory pathway within the developing axon. These findings demonstrate that α7 regulates axon growth in hippocampal neurons, thereby likely contributing to synaptic formation in the developing brain.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号