首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  总被引:1,自引:0,他引:1  
The most serious consequence of sterol 27-hydroxylase deficiency in humans [cerebrotendinous xanthomatosis (CTX)] is the development of cholestanol-containing brain xanthomas. The cholestanol in the brain may be derived from the circulation or from 7alpha-hydroxylated intermediates in bile acid synthesis, present at 50- to 250-fold increased levels in plasma. Here, we demonstrate a transfer of 7alpha-hydroxy-4-cholesten-3-one across cultured porcine brain endothelial cells (a model for the blood-brain barrier) that is approximately 100-fold more efficient than the transfer of cholestanol. Furthermore, there was an efficient conversion of 7alpha-hydroxy-4-cholesten-3-one to cholestanol in cultured neuronal and glial cells as well as in monocyte-derived macrophages of human origin. It is concluded that the continuous intracellular production of cholestanol from a bile acid precursor capable of rapidly passing biomembranes, including the blood-brain barrier, is likely to be of major importance for the accumulation of cholestanol in patients with CTX. Such a mechanism also fits well with the observation that treatment with chenodeoxycholic acid, which normalizes the level of the bile acid precursor, results in a reduction of cholestanol-containing xanthomas even in the brain.  相似文献   

2.

Background

Cell therapy using mesenchymal stromal cells (MSCs) offers new perspectives in the treatment of traumatic brain injury (TBI). The aim of the present study was to assess the impact of platelet-rich plasma scaffolds (PRPS) as support of MSCs in a delayed phase after severe TBI in rats.

Methods

TBI was produced by weight-drop impact to the right cerebral hemisphere. Two months after TBI, four experimental groups were established; saline, PRPS, MSCs in saline, or MSCs in PRPS was transplanted into the area of brain lesion through a small hole. All groups were evaluated in the course of the following 12 months after therapy and the animals were then humanely killed.

Results

Our results showed that a greater functional improvement was obtained after the administration of MSCs in PRPS compared with the other experimental groups.

Discussion

PRPS enhanced the benefit of cell therapy with MSCs to treat chronic brain damage in rats that suffered a severe TBI. The present findings suggest that the use of intralesional MSCs supported in PRPS may be a strategy of tissue engineering for patients with established neurological severe dysfunction after a TBI.  相似文献   

3.
    
Immunomodulatory human mesenchymal stromal cells (hMSC) have been incorporated into therapeutic protocols to treat secondary inflammatory responses post-spinal cord injury (SCI) in animal models. However, limitations with direct hMSC implantation approaches may prevent effective translation for therapeutic development of hMSC infusion into post-SCI treatment protocols. To circumvent these limitations, we investigated the efficacy of alginate microencapsulation in developing an implantable vehicle for hMSC delivery. Viability and secretory function were maintained within the encapsulated hMSC population, and hMSC secreted anti-inflammatory cytokines upon induction with the pro-inflammatory factors, TNF-α and IFN-γ. Furthermore, encapsulated hMSC modulated inflammatory macrophage function both in vitro and in vivo, even in the absence of direct hMSC-macrophage cell contact and promoted the alternative M2 macrophage phenotype. In vitro, this was evident by a reduction in macrophage iNOS expression with a concomitant increase in CD206, a marker for M2 macrophages. Finally, Sprague-Dawley rat spinal cords were injured at vertebra T10 via a weight drop model (NYU model) and encapsulated hMSC were administered via lumbar puncture 24 h post-injury. Encapsulated hMSC localized primarily in the cauda equina of the spinal cord. Histological assessment of spinal cord tissue 7 days post-SCI indicated that as few as 5 × 10(4) encapsulated hMSC yielded increased numbers of CD206-expressing macrophages, consistent with our in vitro studies. The combined findings support the inclusion of immobilized hMSC in post-CNS trauma tissue protective therapy, and suggest that conversion of macrophages to the M2 subset is responsible, at least in part, for tissue protection.  相似文献   

4.
Summary Brain microvessel endothelial cells (BMEC) exhibit the tendency to migrate through 3.0-vm pore semipermeable inserts and establish monolayers on both apical and basal filter surfaces. This can potentially lead to complications in accurately assessing a wide variety of physiologic parameters uniquely associated with these cells. To avoid this problem, we have explored growing BMEC on Transwell filters coated with hydrated collagen gels. BMEC seeded on such gels grow as a monolayer until confluency, but do not invade the subendothelial collagen matrix or the underlying support filter. Furthermore, BMEC grown in this manner exhibit biochemical, morphologic, and electrophysiologic properties reflective of the endothelial cells that comprise the blood-brain barrier in vivo. Although the collagen gel acts as an impenetrable barrier to BMEC, and thus ensures the growth of only a single layer of cells, it nevertheless can be infiltrated by monocytes that have been stimulated by a chemotaxin to undergo diapedesis. Thus, growing BMEC on collagen gel-coated Transwells has broad applications for the in vitro study of both blood-brain barrier physiology as well as the mechanisms underlying central nervous system inflammation.  相似文献   

5.

Background

The blood-brain barrier (BBB) presents a significant challenge to the therapeutic efficacy of stem cells in chronic stroke. Various methods have been developed to increase BBB permeability, but these are associated with adverse effects and are, therefore, not clinically applicable. We recently identified that combination drug treatment of mannitol and temozolomide improved BBB permeability in vitro. Here, we investigated whether this combination could increase the effectiveness of stem cell treatment in an animal model of chronic ischemic stroke.

Methods

Chronic stroke was induced in rats by middle cerebral artery occlusion (MCAo). After then, rats were administered human umbilical cord–derived mesenchymal stromal cells (hUC-MSCs) by intravenous injection with or without combination drug treatment of mannitol and temozolomide. To evaluate the therapeutic efficacy, behavioral and immunohistochemical tests were performed, and the differences among control, stem cell only, combination drug only and stem cell with combination drug treatment were analyzed.

Results

Although no hUC-MSCs were detected in any group, treatment with stem cells and combination drug of mannitol and temozolomide increased the intracerebral delivery of hCD63-positive microvesicles compared with stem cell only treatment. Furthermore, treatment with stem cells and drug combination ameliorated behavioral deficits and increased bromodeoxyuridine-, doublecortin- and Reca-1–positive cells in the perilesional area as compared with other groups.

Discussion

The combination drug treatment of mannitol and temozolomide allowed for the efficient delivery of hUC-MSC–derived microvesicles into the brain in a chronic stroke rat model. This attenuated behavioral deficits, likely by improving neural regeneration and angiogenesis. Thus, combination drug treatment of mannitol and temozolomide could be a novel therapeutic option for patients with chronic ischemic stroke.  相似文献   

6.
7.
    
《Cytotherapy》2014,16(7):915-926
BackgroundThere is a growing interest in mesenchymal stem cells (MSCs) because they are regarded as good candidates for cell therapy. Adipose tissue represents an easily accessible source to derive mesenchymal stem cells (Ad-MSCs) non-invasively in large numbers. The aim of this study was to evaluate a defined serum-free medium for in vitro expansion of MSCs as a prerequisite for their clinical use.MethodsAdipose tissue was isolated from healthy donors. Cells were isolated and expanded for five passages in serum-free medium (Mesencult-XF) and Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum (DMEM-FBS). MSC morphology, marker expression, viability, population doubling time and differentiation potential toward osteogenic and adipogenic lineages were evaluated. Bone marrow MSCs were included as controls.ResultsAd-MSCs cultured in Mesencult-XF had shorter population doubling time (33.3 ± 13.7 h) compared with those cultured in DMEM-FBS (54.3 ± 41.0 h, P < 0.05). Ad-MSCs cultured in Mesencult-XF displayed a stable morphology and surface marker expression and a higher differentiation potential in comparison to Ad-MSCs cultured in DMEM-FBS.ConclusionsThe defined serum-free and xeno-free Mesencult-XF media appear to be a good choice for Ad-MSCs, but it is not as good in supporting culture of bone marrow MSCs when the cells are to be used for clinical purposes.  相似文献   

8.
Background aimsAssessing mesenchymal stromal cells (MSCs) after grafting is essential for understanding their migration and differentiation processes. The present study sought to evaluate via cellular magnetic resonance imaging (MRI) if transplantation route may have an effect on MSCs engrafting to fibrotic liver of rats.MethodsRat MSCs were prepared, labeled with superparamagnetic iron oxide and scanned with MRI. Labeled MSCs were transplanted via the portal vein or vena caudalis to rats with hepatic fibrosis. MRI was performed in vitro before and after transplantation. Histologic examination was performed. MRI scan and imaging parameter optimization in vitro and migration under in vivo conditions were demonstrated.ResultsStrong MRI susceptibility effects could be found on gradient echo-weighted, or T21-weighted, imaging sequences from 24 h after labeling to passage 4 of labeled MSCs in vitro. In vivo, MRI findings of the portal vein group indicated lower signal in liver on single shot fast spin echo-weighted, or T2-weighted, imaging and T21-weighted imaging sequences. The low liver MRI signal increased gradually from 0–3 h and decreased gradually from 3 h to 14 days post-transplantation. The distribution pattern of labeled MSCs in liver histologic sections was identical to that of MRI signal. It was difficult to find MSCs in tissues near the portal area on day 14 after transplantation; labeled MSCs appeared in fibrous tuberculum at the edge of the liver. No MRI signal change and a positive histologic examination were observed in the vena caudalis group.ConclusionsThe portal vein route seemed to be more beneficial than the vena caudalis on MSC migration to fibrotic liver of rats via MRI.  相似文献   

9.
    
We recently demonstrated that blood–brain barrier permeabilization using mannitol enhances the therapeutic efficacy of systemically administered human umbilical cord blood (HUCB) by facilitating the entry of neurotrophic factors from the periphery into the adult stroke brain. Here, we examined whether the same blood–brain barrier manipulation approach increases the therapeutic effects of intravenously delivered HUCB in a neonatal hypoxic‐ischaemic (HI) injury model. Seven‐day‐old Sprague–Dawley rats were subjected to unilateral HI injury and then at day 7 after the insult, animals intravenously received vehicle alone, mannitol alone, HUCB cells (15k mononuclear fraction) alone or a combination of mannitol and HUCB cells. Behavioural tests at post‐transplantation days 7 and 14 showed that HI animals that received HUCB cells alone or when combined with mannitol were significantly less impaired in motor asymmetry and motor coordination compared with those that received vehicle alone or mannitol alone. Brain tissues from a separate animal cohort from the four treatment conditions were processed for enzyme‐linked immunosorbent assay at day 3 post‐transplantation, and revealed elevated levels of GDNF, NGF and BDNF in those that received HUCB cells alone or when combined with mannitol compared with those that received vehicle or mannitol alone, with the combined HUCB cells and mannitol exhibiting the most robust neurotropic factor up‐regulation. Histological assays revealed only sporadic detection of HUCB cells, suggesting that the trophic factor–mediated mechanism, rather than cell replacement per se, principally contributed to the behavioural improvement. These findings extend the utility of blood–brain barrier permeabilization in facilitating cell therapy for treating neonatal HI injury.  相似文献   

10.
    
There is increasing evidence that human mesenchymal stem cells (hMSCs) can be a valuable, transplantable source of hepatocytes. Most of the hMSCs preparations used in these studies were likely heterogeneous cell populations, isolated by adherence to plastic surfaces or by density gradient centrifugation. Therefore, the participation of other unknown trace cell populations cannot be rigorously discounted. Here we report the isolation and establishment of a cloned human MSC line (chMSC) from human bone marrow primary culture, through which we confirmed the hepatic differentiation capability of authentic hMSCs. chMSCs expressed markers of mesenchymal cells, but not markers of hematopoietic stem cells. In vitro, chMSCs can differentiate into either mesenchymal cells or cells exhibiting hepatocyte‐like phenotypes. When transplanted intrasplentically into carbon tetrachloride‐injured livers of SCID mice, EGFP‐tagged chMSCs engrafted into the host liver parenchyma, exhibited typical hepatocyte morphology, form a three‐dimensional architecture, and differentiate into hepatocyte‐like cells expressing human albumin and α‐1‐anti‐trypsin. By confocal microscopy, ultrafine intercellular nanotubular structures were visible between adjacent transplanted and host hepatocytes. We postulate that these structures may assist in the phenotype conversion of chMSCs, possibly by exchange of cytoplasmic components between native hepatocytes and transplanted cells. Thus, a clonal pure population of hMSCs, which can be expanded in culture, may have potential as a cellular source for substitution damaged cells in hepatic injury. J. Cell. Biochem. 108: 693–704, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
《Cytotherapy》2014,16(11):1501-1510
Background aimsTraumatic brain injury (TBI) is a leading cause of mortality and morbidity worldwide. Developing effective protocols for the administration of mesenchymal stromal cells (MSCs) is a promising therapeutic strategy to treat TBI. It is important to develop alternatives to direct parenchymal injection at the injury site because direct injection is an expensive and invasive technique. Subarachnoid transplantation, a minimally invasive and low-risk procedure, may be an important and clinically applicable strategy. The aim of this study was to test the therapeutic effect of subarachnoid administration of MSCs on functional outcome 2 months after an experimental TBI in rats.MethodsTwo months after TBI, 30 female Wistar rats were divided into 3 groups (n = 10 in each group): sham, MSC (received 2 × 106 MSCs) and saline (received only saline) groups. Neurological function, brain and spinal cords samples and cerebrospinal fluid were studied.ResultsNo significant differences were found in neurological evaluation and after histological analysis; differences in the expression of neurotrophins were present but were not statistically significant. MSCs survived in the host tissue, and some expressed neural markers.ConclusionsSimilar to direct parenchymal injections, transplanted MSCs survive, migrate to the injury cavity and differentiate into mature neural cell types for at least 6 months after engraftment. These results open the possibility that MSC administration through subarachnoid administration may be a treatment for the consequences of TBI. The transplantation technique and cell number should be adjusted to obtain functional outcome and neurotrophin production differences.  相似文献   

12.
目的:检测多能成体祖细胞(MAPC)的培养条件对猴骨髓间充质细胞(BMMSCs)和人脂肪干细胞(hADSCs)生长的影响,旨在获得更适合治疗视网膜变性疾病的供体细胞。方法通过细胞形态观察、MTT实验、克隆形成率、PCR检测、以及成脂、成骨、成软骨分化潜能检测等,研究MAPC培养条件下猴BMMSCs和hADSCs的特征,并用DMEM/LG和MAPC培养条件培养的hADSCs进行RCS大鼠视网膜下腔移植,通过视网膜电图(ERG)和TUNEL检测,判断细胞移植治疗对视功能及视网膜细胞凋亡的影响。结果与常规培养基相比,MAPC培养条件能促进猴BMMSCs增殖,细胞变小,但传2代后,细胞变得宽大扁平,出现衰老征象;然而,MAPC培养条件下的hADSCs细胞增殖能力及克隆形成率均增强,形成的克隆较大可稳定传10代以上,且具有成脂、成骨、成软骨的多向分化潜能,细胞表面标记物及细胞因子出现差异表达:CD140b、CD90、CD47、HGF和PEDF显著上调,CD73、CD105和IL-6显著下调。与对照组相比,移植DMEM/LG和MAPC培养条件培养的hADSCs(P4)3周后,RCS大鼠的B波波幅明显升高,外核层细胞凋亡明显减少。结论 MAPC培养条件培养的hADSCs显示出更好的视网膜神经保护作用,适合用于治疗视网膜退行性疾病。  相似文献   

13.
间充质干细胞是一类具有强大增殖、多向分化潜能和免疫调节能力的多功能细胞,研究显示间充质干细胞移植可能治疗多种难治性疾病,例如帕金森病、脊髓损伤以及肿瘤等。但是,人们对移植后的细胞在宿主内的存活、分布、增殖、分化、免疫排斥反应以及成瘤特性等问题尚不清楚,所以许多疾病经过细胞移植治疗后的进展及转归情况仍难以获得确切的科学证据。而细胞成像技术(包括放射性核素成像、超声成像、磁共振成像以及光学成像)可以在体外或者体内实现对间充质干细胞实时、无创的示踪,在以间充质干细胞为研究基础的细胞移植治疗和细胞组织再生的医学领域里有着巨大的应用潜力。该文综述近十年来细胞成像技术应用于示踪间充质干细胞移植疗法的研究进展,旨在比较当下多种热门细胞成像技术的优劣,进而找寻更合适的干细胞示踪策略,为干细胞移植治疗的基础和临床研究提供进一步的理论证据支持和研究思路。  相似文献   

14.
15.
The haemopoietic stem cell (HSC) has long been regarded as an archetypal, tissue specific, stem cell, capable of completely regenerating haemopoiesis after myeloablation. It has proved relatively easy to harvest HSC, from bone marrow or peripheral blood. In turn, isolation of these cells has allowed therapeutic stem cell transplantation protocols to be developed, that capitalise on their prodigious self renewal and proliferative capabilities. Ex vivo approaches have been described to isolate, genetically manipulateand expand pluripotent stem cell subsets. These techniques have been crucial to the development of gene therapy, and may allow adults to enjoy the potential advantages of cord blood transplantation. Recently, huge conceptual changes have occurred in stem cell biology. In particular, the dogma that, in adults, stem cells are exclusively tissue restricted has been questioned and there is great excitement surrounding the potential plasticity of these cells, with the profound implications that this has, for developing novel cellular therapies. Mesenchymal stem cells, multipotent adult progenitor cells and embryonic stem cells are potential sources of cells for transplantation purposes. These cells may be directed toproduce HSC, in vitro and in the future may be used for therapeutic, or drug development, purposes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
    

Background

Umbilical cord (UC) tissue can be collected in a noninvasive procedure and is enriched in progenitor cells with potential therapeutic value. Mesenchymal stromal cells (MSCs) can be reliably harvested from fresh or cryopreserved UC tissue by explant outgrowth with no apparent impact on functionality. A number of stem cell banks offer cryopreservation of UC tissue, alongside cord blood, for future cell-based applications. In this setting, measuring and monitoring UC quality is critical.

Materials and Methods

UC explants were evaluated using a plating and scoring system accounting for cell attachment and proliferation. Explant scores for fresh and cryopreserved-then-thawed tissue from the same UC were compared. Metabolic activity of composite UC tissue was also assayed after exposure of the tissue to conditions anticipated to affect UC quality and compared with explant scores within the same UC.

Results

All fresh and cryopreserved tissues yielded MSC-like cells, and cryopreservation of the tissue did not prevent the ability to isolate MSCs by the explant method. Thawed UC tissue scores were 91% (±0.6%; P?=?0.0009) that of the fresh, biologically identical tissue. Within the same UC, explant scores correlated well to both cell yield (R2?=?0.85) and tissue metabolic activity (R2?=?0.69).

Discussion

A uniform explant scoring assay can provide information about the quality of composite UC tissue. Such quantitative measurement is useful for analysis of tissue variability and process monitoring. Additionally, a metabolic assay of UC tissue health provides results that correlate well to explant scoring results.  相似文献   

17.
  总被引:6,自引:0,他引:6  
For the development of innovative cell-based liver directed therapies, e.g. liver tissue engineering, the use of stem cells might be very attractive to overcome the limitation of donor liver tissue. Liver specific differentiation of embryonic, fetal or adult stem cells is currently under investigation. Different types of fetal liver (stem) cells during development were identified, and their advantageous growth potential and bipotential differentiation capacity were shown. However, ethical and legal issues have to be addressed before using fetal cells. Use of adult stem cells is clinically established, e.g. transplantation of hematopoietic stem cells. Other bone marrow derived liver stem cells might be mesenchymal stem cells (MSC). However, the transdifferentiation potential is still in question due to the observation of cellular fusion in several in vivo experiments. In vitro experiments revealed a crucial role of the environment (e.g. growth factors and extracellular matrix) for specific differentiation of stem cells. Co-cultured liver cells also seemed to be important for hepatic gene expression of MSC. For successful liver cell transplantation, a novel approach of tissue engineering by orthotopic transplantation of gel-immobilized cells could be promising, providing optimal environment for the injected cells. Moreover, an orthotopic tissue engineering approach using bipotential stem cells could lead to a repopulation of the recipients liver with healthy liver and biliary cells, thus providing both hepatic functions and biliary excretion. Future studies have to investigate, which stem cell and environmental conditions would be most suitable for the use of stem cells for liver regeneration or tissue engineering approaches.  相似文献   

18.
Mesenchymal stem or stromal cells (MSCs) have become of great interest for cell-based therapy owing to their roles in tissue repair and immune suppression. MSCs have the ability to differentiate into specialized tissues, including bone, cartilage and muscle, among several others. Furthermore, it has been found that MSCs can also serve as cellular factories that secrete mediators to stimulate in situ regeneration of injured tissues. Proteomics has contributed significantly to the identification of new proteins to improve cellular characterization of MSCs, to identify new targets for therapeutic intervention and to elucidate important pathways utilized by MSCs to differentiate into distinct tissues. As proteomics technology advances, several studies can be revisited and analyzed in depth, employing state-of-the-art approaches, helping to uncover the cellular mechanisms utilized by MSCs to exert their regenerative functionalities. In this article, we will review the progress made so far and discuss further opportunities for proteomics to contribute to the clinical applications of MSCs.  相似文献   

19.
  总被引:59,自引:0,他引:59  
  相似文献   

20.
    
Mesenchymal stromal/stem cells (MSCs) are currently applied in regenerative medicine and tissue engineering. Numerous clinical studies have indicated that MSCs from different tissue sources can provide therapeutic benefits for patients. MSCs derived from either human adult or perinatal tissues have their own unique advantages in their medical practices. Usually, clinical studies are conducted by using of cultured MSCs after thawing or short-term cryopreserved-then-thawed MSCs prior to administration for the treatment of a wide range of diseases and medical disorders. Currently, cryogenically banking perinatal MSCs for potential personalized medicine for later use in lifetime has raised growing interest in China as well as in many other countries. Meanwhile, this has led to questions regarding the availability, stability, consistency, multipotency, and therapeutic efficiency of the potential perinatal MSC-derived therapeutic products after long-term cryostorage. This opinion review does not minimize any therapeutic benefit of perinatal MSCs in many diseases after short-term cryopreservation. This article mainly describes what is known about banking perinatal MSCs in China and, importantly, it is to recognize the limitation and uncertainty of the perinatal MSCs stored in cryobanks for stem cell medical treatments in whole life. This article also provides several recommendations for banking of perinatal MSCs for potentially future personalized medicine, albeit it is impossible to anticipate whether the donor will benefit from banked MSCs during her/his lifetime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号