首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long intergenic noncoding RNA 460 (LINC00460) has been identified as a critical regulator for multiple types of cancers. However, the biological role and underlying mechanism in human papillary thyroid carcinoma (PTC) still remain unclear and need to be uncovered. This study was aimed to ascertain the biological role and molecular mechanism of LINC00460 in PTC progression. Our findings revealed that the level of LINC00460 was significantly upregulated in PTC tissues and cell lines, which was positively correlated with advanced tumor–node–metastasis (TNM) stage and lymph node metastasis. Cellular experiments exhibited that knockdown of LINC00460 decreased proliferative, migratory, and invasive abilities of PTC cells. Mechanism assays noted that knockdown of LINC00460 suppressed cell proliferation, migration, and invasion, and inhibited expression of sphingosine kinase 2 (SphK2, a target of miR-613) in PTC cells, at least in part, by regulating miR-613. These findings suggested that LINC00460 could function as a competing endogenous RNA to regulate SphK2 expression by sponging miR-613 in PTC. Targeting LINC00460 could be a promising therapeutic strategy for patients with PTC.  相似文献   

2.
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. Nevertheless, its underlying molecular mechanisms are largely unknown. LINC00152 are recently investigated in several cancer types. In our current investigation, we observed LINC00152 was obviously upregulated in HCC cells. LINC00152 was significantly downregulated by infecting LV-shLINC00152 in HepG2 and SNU449 cells. Loss of LINC00152 remarkably repressed HCC cell proliferation, cell colony formation, induced cell apoptosis, and restrained cell migration/invasion. Growing evidence has reported long noncoding RNAs can sponge microRNAs to modulate cancer process. Here, we indicated miR-215 was greatly decreased in HCC and LINC00152 regulated HCC development via sponging miR-215. For another, the binding association between LINC00152 and miR-215 was proved by a series of functional assays. CDK13 was predicted as the target of miR-215. Upregulation of miR-215 greatly depressed CDK13 in HCC cells. Subsequently, the in vivo results demonstrated that silence of LINC00152 restrained HCC development via modulating miR-215 to up-regulate CDK13. Therefore, it was revealed that LINC00152 contributed to the progression of HCC by the modulation of miR-215 and CDK13.  相似文献   

3.
Long intergenic non-coding RNA 00152 (LINC00152) is aberrantly expressed in various human malignancies and plays an important role in the pathogenesis. Here, we found that LINC00152 is upregulated in hepatocellular carcinoma (HCC) tissues as compared to adjacent non-neoplastic tissues; gain-and-loss-of-function analyses in vitro showed that LINC00152 facilitates HCC cell cycle progression through regulating the expression of CCND1. LINC00152 knockdown inhibits tumorigenesis in vivo. MS2-RIP analysis indicated that LINC00152 binds directly to miR-193a/b-3p, as confirmed by luciferase reporter assays. Furthermore, ectopic expression of LINC00152 partially halted the decrease in CCND1 expression and cell proliferation capacity induced by miR-193a/b-3p overexpression. Thus, LINC00152 acts as a competing endogenous RNA (ceRNA) by sponging miR-193a/b-3p to modulate its target gene, CCND1. Our findings establish a ceRNA mechanism regulating cell proliferation in HCC via the LINC00152/miR-193a/b-3p/CCND1 signalling axis, and identify LINC00152 as a potential therapeutic target for HCC.  相似文献   

4.
Laryngeal squamous cell carcinoma (LSCC) is a very common neoplasm of the head and neck in the world. Long noncoding RNAs play key roles in cell infiltration, fate, apoptosis, and invasion. However, the functional role and expression of LINC00339 remains unclear in LSCC. In this study, we showed that the expression level of LINC00339 was upregulated in LSCC tissues and cell lines. LINC00339 silencing suppressed the proliferation, invasion, and epithelial-mesenchymal transition (EMT) progression of LSCC cells. In addition, we showed that LINC00339 acted as a sponge of miR-145, and LINC00339 silencing promoted the expression of miR-145 in Hep2 cell. Furthermore, the expression of miR-145 was lower in LSCC tissues than in their paired normal samples and the miR-145 expression level was negatively correlated with LINC00339 expression in LSCC tissues. The knockdown of miR-145 promoted the proliferation, invasion, and EMT progression of LSCC cells. Finally, we indicated that LINC00339 silencing inhibited the proliferation, invasion, and EMT progression of LSCC cells by suppressing the miR-145 expression. These data suggested that LINC00339 acted as an oncogene in the development of LSCC, partly by regulating the miR-145 expression.  相似文献   

5.
6.
Long noncoding RNAs (lncRNAs) have been demonstrated to play significant roles in hepatocellular carcinoma (HCC) tumor progression. LINC01433 has been implicated in the progression of lung cancer. However, its biological role in HCC remains poorly understood. In our current study, we focused on the detailed mechanism of LINC01433 in HCC development. First, it was exhibited that LINC01433 was remarkably elevated in HCC cells, which indicated that LINC01433 was involved in HCC. Then, knockdown of LINC01433 was able to restrain HCC cell proliferation and cell colony formation and greatly induced cell apoptosis. On the contrary, overexpression of LINC01433 promoted HCC cell proliferation, increased cell colony formation, and enhanced cell invasion capacity. Subsequently, we found that miR-1301 was remarkably decreased in HCC cells, and it can serve as a target of LINC01433 according to bioinformatics analysis. In addition, the binding correlation between them was validated by performing RNA pull-down experiments and RIP assay. Moreover, STAT3 was predicted and validated as a target of miR-1301, and it was shown that miR-1301 mimics significantly suppressed STAT3 in HCC cells. Finally, in vivo models were established, and the results demonstrated that silencing of LINC01433 could repress HCC development through modulating miR-1301 and STAT3. Taken together, these results indicated in our study that LINC01433 participated in HCC progression through modulating the miR-1301/STAT3 axis and it might act as a novel biomarker in HCC diagnosis and treatment.  相似文献   

7.
Tongue squamous cell carcinoma (TSCC) is the most common type of oral cancer and is an aggressive head and neck malignancy. Increasing studies have demonstrated that long noncoding RNAs (lncRNAs) play important roles in diverse biological cell processes, such as cell development, fate decisions, cell differentiation, cell migration, and invasion. In our study, we showed that long noncoding RNA colorectal neoplasia differentially expressed (CRNDE) expression was upregulated in TSCC cell lines and tissues. Overexpression of CRNDE increased the TSCC cell proliferation, cell cycle, and cell invasion. Moreover, ectopic expression of CRNDE inhibited the miR-384 expression in the SCC1 cell and increased the Kirsten Ras (KRAS), cell division cycle 42, and insulin receptor substrate 1 expression, which were the direct target genes of miR-384. We demonstrated that the miR-384 expression was downregulated in the TSCC samples compared with the paired adjacent nontumor samples. The expression of CRNDE was negatively correlated with the expression of miR-384 in the TSCC samples. Overexpression of miR-384 suppressed TSCC cell proliferation, cell cycle, and invasion. Furthermore, we demonstrated that CRNDE promoted TSCC cell proliferation and invasion through inhibiting miR-384 expression. These results suggested that CRNDE acts as an oncogene in the development of TSCC, which partially occurs through inhibiting miR-384 expression.  相似文献   

8.
9.
10.
Colorectal cancer is one of the most common and leading malignancies globally. Long noncoding RNAs (lncRNAs) function as potentially critical regulator in colorectal cancer. LINC01234, a novel lncRNA in tumor biology, regulates the progression of various tumors. However, the tumorigenic mechanism of LINC01234 in colorectal cancer is still unclear. This study was performed with the aim to prospectively investigate clinical significance, effect, and mechanism of lncRNA LINC01234 in colorectal cancer. First, we found that LINC01234, localized in the cytoplasm, was increased in both colorectal cancer cell lines and tissues. Subsequent functional assays suggested LINC01234 knockdown suppressed cell proliferation, migration, and invasion of colorectal cancer cells, while blocked cell cycle and induced cell apoptosis. Moreover, we identified that miR-1284 was target of LINC01234, we further demonstrated a negative correlation with LINC01234 in colorectal cancer tissues and cells. Furthermore, miR-1284 targeted and suppressed tumor necrosis factor receptor–associated factor 6 (TRAF6). Loss-of-function assay revealed that LINC01234 silencing suppressed colorectal cancer progression through inhibition of miR-1284. In vivo subcutaneous xenotransplanted tumor model indicated LINC01234 knockdown inhibited in vivo tumorigenic ability of colorectal cancer via downregulation of TRAF6. Collectively, this study clarified the biological significance of LINC01234/miR-1284/TRAF6 axis in colorectal cancer progression, providing insights into LINC01234 as novel potential therapeutic target for colorectal cancer therapeutic from bench to clinic.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
Previous study has identified the aberrant expression of LINC00657, a long non-coding RNA (lncRNA), in human breast cancer. However, the expression pattern, biological function and underlying mechanism of LINC00657 in human hepatocellular carcinoma (HCC) remain obscure. The expression levels of LINC00657 in HCC tissues and cell lines were determined by quantitative real-time PCR. CCK-8 assay, cell colony formation assay, cell cycle analysis, Transwell assay were performed to determine whether LINC00657 could affect HCC progression. Luciferase reporter assay was used to assess the target of LINC00657. Expressions of the relevant proteins were analyzed by Western blot. Herein, we found that LINC00657 was downregulated in HCC tissue specimens as well as in malignant HCC cell lines. LINC00657 overexpression inhibited the proliferation, migration and invasion of HCC cells, while LINC00657 depletion promoted both cell viability and cell invasion in vitro. We also found that LINC00657 could inhibit tumor growth in vivo. Further experiments demonstrated that down-regulated LINC00657 increased the expression of miR-106a-5p. miR-106a-5p decreased the abundances of PTEN protein, while had no impact on PTEN mRNA. Moreover, we identified that both LINC00657 and PTEN mRNA were targets of miR-106a-5p by using dual-luciferase reporter assay. Our results provide the new evidence supporting the tumor-suppressive role of LINC00657 in HCC, suggesting that LINC00657 might play a role in HCC and can be a novel therapeutic target for treating HCC.  相似文献   

19.
The great importance of long noncoding RNAs (lncRNAs) has been acknowledged in tumorigenesis gradually. LncRNA LINC01857 is a novel lncRNA and has been reported to promote breast cancer progression. However, the biological roles of LINC01857 in glioma are not explored. In the present research, LINC01857 levels were found to be upregulated in glioma. In addition, LINC01857 expression is negatively correlated with survival rate in glioma patients. Functional investigation revealed that LINC01857 downregulation impaired glioma proliferation and invasiveness. Furthermore, LINC01857 knockdown led to repressed growth of glioma in vivo. We found that LINC01857 could be a sponge for miR-1281 and inhibits its level to upregulate TRIM65 expression. What's more, we showed that miR-1281 mimics also attenuated tumor cell proliferation, migration, and invasion. And rescue assays demonstrated that LINC01857 promotes glioma progression through modulating miR-1281/TRIM65 pathway. Collectively, this study first demonstrated that a novel LINC01857/miR-1281/TRIM65 signaling regulates glioma progression.  相似文献   

20.
Cervical cancer is a serious threat to women’s health and is the third most common malignancy in women worldwide. Recent studies indicate that the long non-coding RNA CCAT1 plays a role in the malignant behavior of many tumors. However, the role of CCAT1 in cervical cancer is still unknown. Our aim is to evaluate the expression and investigate the regulatory role and potential mechanism of CCAT1 in cervical cancer. CCAT1 expression was measured by qRT-PCR. In addition, CCK-8 assays, colony formation assays, qRT-PCR assays, Transwell assays and xenograft experiments were performed to determine the role of CCAT1 in the proliferation and invasion in cervical cancer cells. The expression of CCAT1 in the cervical cancer tissues was higher than in the adjacent normal tissues. Overexpressing CCAT1 promoted cervical cancer cell proliferation, colony formation, and invasion in vitro. Elevated CCAT1 suppressed miR-181a expression, which was accompanied by an increased expression of MMP14 and HB-EGF. In contrast, knocking down CCAT1 resulted in increased expression of miR-181a, along with decreased expression of MMP14 and HB-EGF. Thus, CCAT1 is a key oncogenic lncRNA associated with cervical cancer and plays a role in promoting cervical cancer cell proliferation and invasion by regulating the miR-181a-5p/MMP14 axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号