首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sevoflurane, an inhaled ether general anesthetic agent, exerts a variety of neurotoxic effects, including oxidative stress, mitochondrial dysfunction, and neuronal apoptosis. However, the underlying molecular mechanisms remain to be elucidated. DJ-1 is a protein that exerts neuroprotective effects against different kinds of stress through multiple pathways. This study aimed to investigate the neuroprotective effects of DJ-1 against sevoflurane-induced neurotoxicity. Here, we found that sevoflurane treatment significantly increased DJ-1 expression in human neuroblastoma M17 cells in a dose-dependent manner at both the mRNA and protein levels. Interestingly, we found that overexpression of wild-type (WT) DJ-1 prevented sevoflurane-induced generation of reactive oxygen species (ROS) and nitric oxide (NO), deletion of reduced GSH, reduction of adenosine triphosphate (ATP), and mitochondrial membrane potential. Interestingly, we found that WT DJ-1 could inhibit sevoflurane-induced apoptosis by modulating the mitochondrial pathway. However, its “loss of function” mutation DJ-1(L166P) exacerbated sevoflurane-induced neurotoxicity in M17 cells. Our findings suggest that WT DJ-1 protects neuronal cells against sevoflurane-induced neurotoxicity.  相似文献   

2.
Kang  Wenbin  Lu  Dihan  Yang  Xiaoyu  Ma  Wudi  Chen  Xi  Chen  Keyu  Xu  Xuanxian  Zhou  Xue  Zhou  Lihua  Feng  Xia 《Neurochemical research》2020,45(9):1986-1996

Numerous studies have shown that the inhaled general anesthetic sevoflurane imposes toxicity on the central nervous system during the developmental period but the underlying mechanisms remain unclear. Neuropeptide Y (NPY) was reported to have important neuroprotective effects, which can attenuate neuronal loss under pathological conditions. However, the effects of NPY on sevoflurane-induced hippocampal neuronal apoptosis have not been investigated. In this study, postnatal day 7 (PND7) Sprague–Dawley rats and primary cultured cells separated from hippocampi were exposed to sevoflurane (2.4% for 4 h) and the NPY expression levels after treatment were analyzed. Furthermore, neuronal apoptosis assay was conducted via immunofluorescence staining of cleaved caspase-3 and flow cytometry after exogenous NPY administration to PND7 rats as well as cultured hippocampal neurons to elucidate the role of NPY in sevoflurane-induced neurotoxicity. Our results showed the level of NPY gradually decreased within 24 h after sevoflurane exposure in both the hippocampus of PND7 rats and cultured hippocampal neurons, but not in cultured astrocytes. In the exogenous NPY pretreatment study, the proportion of cleaved caspase-3 positive cells in the CA1 region of the hippocampus was increased significantly at 24 h after sevoflurane treatment, while NPY pretreatment could reduce it. Similarly, NPY could also reverse the apoptogenic effect of sevoflurane on cultured neurons. Herein, our results showed that sevoflurane caused a significant decrease in NPY expression, whereas exogenous NPY supplementation could reduce sevoflurane-induced hippocampal neuronal apoptosis both in vivo and in vitro.

  相似文献   

3.
Sevoflurane, a common used inhaled anaesthetic, induces neuronal apoptosis in preclinical studies and correlates with functional neurological impairment. We investigated whether FTY720, a known sphingosine-1 phosphate (S1P) receptor agonist, could exert neuroprotective effect against sevoflurane-induced neurotoxicity. Neuroprotective effect of FTY720 was evaluated in vitro in hippocampal neuronal cells from neonatal rats and in vivo in rat pups. In vitro cell apoptosis was determined by flow cytometry after exposure to 3 % sevoflurane for different period of time, or after 6-h exposure to sevoflurane with the presence of FTY720, SEW2871 (selective S1P1 receptor agonist) or combination of FTY720 and VPC23019 (S1P antagonist). Western blot analysis was performed with hippocampal tissue from rat pups exposed to 3 % sevoflurane for 6 h with or without pre-treatment with FTY720 injection. Neurological function tests were also performed with rat pups exposed to 3 % sevoflurane for 6 h with or without pre-treatment with FTY720 injection. FTY720, at nanomolar concentration, significantly prevents sevoflurane-induced neuronal apoptosis. SEW2871 showed similar neuroprotective effect to FTY720, whereas VPC23019 abrogated the neuroprotective effect of FTY720 when given together. Western blots results demonstrated that FTY710 significantly preserved the level of phosphorylated ERK1/2, Bcl-2 and Bax. Although anaesthetic treatment did not affect general health and emotional status, sevoflurane-induced cognitive impairment in rat models. Administration of FTY720 at 1 mg/kg significantly attenuated sevoflurane-induced neurocognitive impairment. Although further studies are needed to evaluate the feasibility of clinical usage of FTY720 as neuroprotective agent, the study provides preclinical experimental evidence for the efficacy of FTY720 against sevoflurane-induced developmental neurotoxicity.  相似文献   

4.
Sevoflurane, the most commonly used inhaled anesthetic in pediatric anesthesia, has been reported to induce cognitive impairment in developing brain in preclinical and clinical settings. However, the mechanism and therapeutic measures of this developmental neurotoxicity need to be further investigated. Resveratrol, a natural polyphenolic agent, has been reported to improve cognitive function in neurological disorders and aging models through anti-inflammatory activity. However, its effect on sevoflurane-induced cognitive impairment in developing mice remains unknown. The present study was designed to investigate the therapeutic potential of resveratrol on sevoflurane-induced cognitive impairment. Six-day-old mice received anesthesia with 3% sevoflurane 2 h daily on postnatal days (P) 6, P7 and P8. About 100 mg/kg resveratrol were intraperitoneally administered for 6 consecutive days to neonatal mice before anesthesia. Sevoflurane exposure significantly suppressed the expression of Sirtuin 1 (SIRT1) and activated microglia in hippocampi. Furthermore, the levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were markedly increased after sevoflurane exposure. Strikingly, resveratrol pretreatment ameliorated sevoflurane-induced SIRT1 inhibition and microglial activation. Of note, resveratrol reversed sevoflurane-induced imbalance of M1/M2 microglia ratio revealed by increasing mRNA level of clusters of differentiation 206 (CD206) and decreasing mRNA levels of clusters of differentiation 86 (CD86) and suppressor of cytokine signaling 3 (SOCS3). Consequently, sevoflurane-induced cognitive impairment in developing mice was ameliorated by resveratrol pretreatment. Taken together, repeated sevoflurane exposure to the developing brain resulted in SIRT1 inhibition, NF-κB acetylation, and microglial activation. Resveratrol pretreatment ameliorated cognitive impairment in developing mice received sevoflurane exposure by modulating SIRT1-NF-κB pathway in microglia. In this regard, our findings open novel directions to explore promising therapeutic targets for preventing the developmental neurotoxicity of sevoflurane.  相似文献   

5.
Lian  Wan-Yi  Lu  Ze-Peng  Zhao  Wei  Zou  Jia-Qi  Lu  Zi-Ying  Zhou  Li-Bing  Lei  Hong-Yi 《Neurochemical research》2022,47(2):315-326

The effects of general anesthetics on the developing brain have aroused much attention in recent years. Sevoflurane, a commonly used inhalation anesthetic especially in pediatric anesthesia, can induce developmental neurotoxicity. In this study, the differentially expressed mRNAs in the hippocampus of newborn rats exposed to 3% sevoflurane for 6 h were detected by RNA-Sequencing. Those data indicated that the mRNA of Klotho was increased after exposure to sevoflurane. Moreover, the protein expression of Klotho was assayed by Western Blot. Besides over-expression and under-expression of Klotho protein, we also detected changes of cell proliferation, ROS, JC-1, and Bcl-2/Bax ratio in PC12 cells exposed to sevoflurane. After exposure to 3% sevoflurane, the expression of Klotho protein increased in the hippocampus of neonatal rats. In PC12 cells, exposure to sevoflurane could increase cellular ROS level, reduce mitochondrial membrane potential and Bcl-2/Bax ratio. While overexpression of Klotho alleviated the above changes, knockdown of Klotho aggravated the injury of sevoflurane. Klotho protein could reduce oxidative stress and mitochondrial injury induced by sevoflurane in the neuron.

  相似文献   

6.
Amyloid beta peptide (Abeta) accumulates in the CNS in Alzheimer's disease. Both the full peptide (1-42) or the 25-35 fragment are toxic to neurons in culture. We have used fluorescence imaging technology to explore the mechanism of neurotoxicity in mixed asytrocyte/neuronal cultures prepared from rat or mouse cortex or hippocampus, and have found that Abeta acts preferentially on astrocytes but causes neuronal death. Abeta causes sporadic transient increases in [Ca2+]c in astrocytes, associated with a calcium dependent increased generation of reactive oxygen species (ROS) and glutathione depletion. This caused a slow dissipation of mitochondrial potential on which abrupt calcium dependent transient depolarizations were superimposed. The mitochondrial depolarization was reversed by mitochondrial substrates glutamate, pyruvate or methyl succinate, and by NADPH oxidase (NOX) inhibitors, suggesting that it reflects oxidative damage to metabolic pathways upstream of mitochondrial complex I. The Abeta induced increase in ROS and the mitochondrial depolarization were absent in cells cultured from transgenic mice lacking the NOX component, gp91phox. Neuronal death after 24 h of Abeta exposure was dramatically reduced both by NOX inhibitors and in gp91phox knockout mice. Thus, by raising [Ca2+]c in astrocytes, Abeta activates NOX, generating oxidative stress that is transmitted to neurons, causing neuronal death.  相似文献   

7.
1. We have investigated the effect of the volatile anesthetic sevoflurane on acetylcholine (ACh) release from rat brain cortical slices. 2. The release of [3H]-ACh into the incubation fluid was studied after labeling the tissue ACh with [methyl-3H]-choline chloride. 3. We observed that sevoflurane induced an increase on the release of ACh that was dependent on incubation time and anesthetic concentration. The sevoflurane-induced ACh release was not blocked by tetrodotoxin (TTX) and therefore was independent of sodium channels. In addition, the sevoflurane effect was not blocked by ethylene glycol-bis(beta-aminoethyl ether (EGTA) or cadmium (Cd2+), thus independent of extracellular calcium. 4. The sevoflurane-induced ACh release was inhibited by 1,2-bis (2-aminophenoxy) ethane-N,N,N',N'-tetra-acetic acid (BAPTA-AM), suggesting the involvement of intracellular calcium-sensitive stores in the process. Dantrolene, an inhibitor of ryanodine receptors, had no effect but 2-aminoethoxydiphenylborate (2-APB), a membrane-permeable inhibitor of inositol 1,4,5-triphosphate receptor inhibited the sevoflurane-induced release of ACh. 5. It is concluded that sevoflurane-induced release of ACh in brain cortical slices involves the mobilization of calcium from IP3-sensitive calcium stores.  相似文献   

8.
Oxidative cell death is an important contributing factor in neurodegenerative diseases. Using HT22 mouse hippocampal neuronal cells as a model, we sought to demonstrate that mitochondria are crucial early targets of glutamate-induced oxidative cell death. We show that when HT22 cells were transfected with shRNA for knockdown of the mitochondrial superoxide dismutase (SOD2), these cells became more susceptible to glutamate-induced oxidative cell death. The increased susceptibility was accompanied by increased accumulation of mitochondrial superoxide and loss of normal mitochondrial morphology and function at early time points after glutamate exposure. However, overexpression of SOD2 in these cells reduced the mitochondrial superoxide level, protected mitochondrial morphology and functions, and provided resistance against glutamate-induced oxidative cytotoxicity. The change in the sensitivity of these SOD2-altered HT22 cells was neurotoxicant-specific, because the cytotoxicity of hydrogen peroxide was not altered in these cells. In addition, selective knockdown of the cytosolic SOD1 in cultured HT22 cells did not appreciably alter their susceptibility to either glutamate or hydrogen peroxide. These findings show that the mitochondrial SOD2 plays a critical role in protecting neuronal cells from glutamate-induced oxidative stress and cytotoxicity. These data also indicate that mitochondria are important early targets of glutamate-induced oxidative neurotoxicity.  相似文献   

9.

Objectives

To investigate if perinatal Omega-3 polyunsaturated fatty acids (n-3 PUFAs) supplementation can improve sevoflurane-induced neurotoxicity and cognitive impairment in neonatal rats.

Methods

Female Sprague-Dawley rats (n = 3 each group) were treated with or without an n-3 PUFAs (fish oil) enriched diet from the second day of pregnancy to 14 days after parturition. The offspring rats (P7) were treated with six hours sevoflurane administration (one group without sevoflurane/prenatal n-3 PUFAs supplement as control). The 5-bromodeoxyuridine (Brdu) was injected intraperitoneally during and after sevoflurane anesthesia to assess dentate gyrus (DG) progenitor proliferation. Brain tissues were harvested and subjected to Western blot and immunohistochemistry respectively. Morris water maze spatial reference memory, fear conditioning, and Morris water maze memory consolidation were tested at P35, P63 and P70 (n = 9), respectively.

Results

Six hours 3% sevoflurane administration increased the cleaved caspase-3 in the thalamus, parietal cortex but not hippocampus of neonatal rat brain. Sevoflurane anesthesia also decreased the neuronal precursor proliferation of DG in rat hippocampus. However, perinatal n-3 PUFAs supplement could decrease the cleaved caspase-3 in the cerebral cortex of neonatal rats, and mitigate the decrease in neuronal proliferation in their hippocampus. In neurobehavioral studies, compared with control and n-3 PUFAs supplement groups, we did not find significant spatial cognitive deficit and early long-term memory impairment in sevoflurane anesthetized neonatal rats at their adulthood. However, sevoflurane could impair the immediate fear response and working memory and short-term memory. And n-3 PUFAs could improve neurocognitive function in later life after neonatal sevoflurane exposure.

Conclusion

Our study demonstrated that neonatal exposure to prolonged sevoflurane could impair the immediate fear response, working memory and short-term memory of rats at their adulthood, which may through inducing neuronal apoptosis and decreasing neurogenesis. However, these sevoflurane-induced unfavorable neuronal effects can be mitigated by perinatal n-3 PUFAs supplementation.  相似文献   

10.
Hydrogen sulfide (H(2)S) has been shown to act as a neuroprotectant and antioxidant. Numerous studies have demonstrated that exposure to formaldehyde (FA) causes neuronal damage and that oxidative stress is one of the most critical effects of FA exposure. Accumulation of FA is involved in the pathogenesis of Alzheimer's disease (AD). The aim of present study is to explore the inhibitory effects of H(2)S on FA-induced cytotoxicity and apoptosis and the molecular mechanisms underlying in PC12 cells. We show that sodium hydrosulfide (NaHS), a H(2)S donor, protects PC12 cells against FA-mediated cytotoxicity and apoptosis and that NaHS preserves the function of mitochondria by preventing FA-induced loss of mitochondrial membrane potential and release of cytochrome c in PC12 cells. Furthermore, NaHS blocks FA-exerted accumulation of intracellular reactive oxygen species (ROS), down-regulation of Bcl-2 expression, and up-regulation of Bax expression. These results indicate that H(2)S protects neuronal cells against neurotoxicity of FA by preserving mitochondrial function through attenuation of ROS accumulation, up-regulation of Bcl-2 level, and down-regulation of Bax expression. Our study suggests a promising future of H(2)S-based preventions and therapies for neuronal damage after FA exposure.  相似文献   

11.
In this study we have investigated the mechanisms leading to mitochondrial damage in cultured neurons following sustained exposure to nitric oxide. Thus, the effects upon neuronal mitochondrial respiratory chain complex activity and reduced glutathione concentration following exposure to either the nitric oxide donor, S-nitroso-N-acetylpenicillamine, or to nitric oxide releasing astrocytes were assessed. Incubation with S-nitroso-N-acetylpenicillamine (1 mM) for 24 h decreased neuronal glutathione concentration by 57%, and this effect was accompanied by a marked decrease of complex I (43%), complex II–III (63%), and complex IV (41%) activities. Incubation of neurons with the glutathione synthesis inhibitor, l-buthionine-[S,r]-sulfoximine caused a major depletion of neuronal glutathione (93%), an effect that was accompanied by a marked loss of complex II–III (60%) and complex IV (41%) activities, although complex I activity was only mildly decreased (34%). In an attempt to approach a more physiological situation, we studied the effects upon glutathione status and mitochondrial respiratory chain activity of neurons incubated in coculture with nitric oxide releasing astrocytes. Astrocytes were activated by incubation with lipopolysaccharide/interferon-γ for 18 h, thereby inducing nitric oxide synthase and, hence, a continuous release of nitric oxide. Coincubation for 24 h of activated astrocytes with neurons caused a limited loss of complex IV activity and had no effect on the activities of complexes I or II–III. However, neurons exposed to astrocytes had a 1.7-fold fold increase in glutathione concentration compared to neurons cultured alone. Under these coculture conditions, the neuronal ATP concentration was modestly reduced (14%). This loss of ATP was prevented by the nitric oxide synthase inhibitor, NG-monomethyl-L-arginine. These results suggest that the neuronal mitochondrial respiratory chain is damaged by sustained exposure to nitric oxide and that reduced glutathione may be an important defence against such damage.  相似文献   

12.
Chronic exposure to the pesticide rotenone induces a selective degeneration of nigrostriatal dopaminergic neurons and reproduces the features of Parkinson's disease in experimental animals. This action is thought to be relevant to its inhibition of the mitochondrial complex I, but the precise mechanism of this suppression in selective neuronal death is still elusive. Here we investigate the mechanism of dopaminergic neuronal death mediated by rotenone in primary rat mesencephalic neurons. Low concentrations of rotenone (5-10 nM) induce the selective death of dopaminergic neurons without significant toxic effects on other mesencephalic cells. This cell death was coincident with apoptotic events including capsase-3 activation, DNA fragmentation, and mitochondrial membrane depolarization. Pretreatment with coenzyme Q10, the electron transporter in the mitochondrial respiratory chain, remarkably reduced apoptosis as well as the mitochondrial depolarization induced by rotenone, but other free radical scavengers such as N-acetylcysteine, glutathione, and vitamin C did not. Furthermore, the selective neurotoxicity of rotenone was mimicked by the mitochondrial protonophore carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), a cyanide analog that effectively collapses a mitochondrial membrane potential. These data suggest that mitochondrial depolarization may play a crucial role in rotenone-induced selective apoptosis in rat primary dopaminergic neurons.  相似文献   

13.
Mitochondrial oxidative stress is a contributing factor in the etiology of numerous neuronal disorders. However, the precise mechanism(s) by which mitochondrial reactive oxygen species modify cellular targets to induce neurotoxicity remains unknown. In this study, we determined the role of mitochondrial aconitase (m-aconitase) in neurotoxicity by decreasing its expression. Incubation of the rat dopaminergic cell line, N27, with paraquat (PQ(2+) ) resulted in aconitase inactivation, increased hydrogen peroxide (H(2) O(2) ) and increased ferrous iron (Fe(2+) ) at times preceding cell death. To confirm the role of m-aconitase in dopaminergic cell death, we knocked down m-aconitase expression via RNA interference. Incubation of m-aconitase knockdown N27 cells with PQ(2+) resulted in decreased H(2) O(2) production, Fe(2+) accumulation, and cell death compared with cells expressing basal levels of m-aconitase. To determine the metabolic role of m-aconitase in mediating neuroprotection, we conducted a complete bioenergetic profile. m-Aconitase knockdown N27 cells showed a global decrease in metabolism (glycolysis and oxygen consumption rates) which blocked PQ(2+) -induced H(+) leak and respiratory capacity deficiency. These findings suggest that dopaminergic cells are protected from death by decreasing release of H(2) O(2) and Fe(2+) in addition to decreased cellular metabolism.  相似文献   

14.
Glutamate-mediated excitotoxicity is involved in many acute and chronic brain diseases. Homer proteins, a new member of the postsynaptic scaffolding proteins, regulate glutamatergic signaling and intracellular calcium mobilization in the central nervous system. Here we investigated the effects of down-regulating Homer1b/c, a constitutively expressed long form of Homer proteins, on glutamate excitotoxicity-induced neuronal injury. In our in vitro excitotoxic models, we demonstrated that glutamate insults led to a dose-dependent neuronal injury, which was mediated by the intracellular calcium-dependent reactive oxygen species (ROS) production. We found that down-regulation of Homer1b/c with specific small interfering RNA (siRNA) improved neuronal survival, inhibited intracellular ROS production, and reduced apoptotic cell death after neurotoxicity. Homer1b/c knockdown decreased the intracellular calcium overload through inhibition of the group I metabotropic glutamate receptor (mGluR)/inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ release from the endoplasmic reticulum (ER) in injured neurons. In addition, Homer1b/c siRNA transfection attenuated the activation of eukaryotic initiation factor 2α (eIF2α), RNA-dependent protein kinase-like ER kinase (PERK) and caspase-12, and inhibited the up-regulation of glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) after glutamate treatment. Homer1b/c knockdown also preserved the mitochondrial membrane potential (MMP), reduced cytochrome c (Cyt. c) release, and partly blocked the increase of capase-9 activity and Bax/Bcl-2 ratio. Taken together, these results suggest that down-regulation of Homer1b/c protects cortical neurons against glutamate-induced excitatory damage, and this neuroprotection may be dependent at least in part on the inhibition of calcium-dependent ROS production and the preservation of the ER and mitochondrial function.  相似文献   

15.
Elderly patients are more likely to suffer from postoperative memory impairment for volatile anesthetics could induce aging neurons degeneration and apoptosis while the mechanism was still elusive. Therefore we hypothesized that ER stress mediated hippocampal neurons apoptosis might play an important role in the mechanism of sevoflurane-induced cognitive impairment in aged rats. Thirty 18-month-old male Sprague-Dawley rats were divided into two groups: the sham anesthesia group (exposure to simply humidified 30–50% O2 balanced by N2 in an acrylic anesthetizing chamber for 5 hours) and the sevoflurane anesthesia group (received 2% sevoflurane in the same humidified mixed air in an identical chamber for the same time). Spatial memory of rats was assayed by the Morris water maze test. The ultrastructure of the hippocampus was observed by transmission electron microscopy (TEM). The expressions of C/EBP homologous protein (CHOP) and caspase-12 in the hippocampus were observed by immunohistochemistry and real-time PCR analysis. The apoptosis neurons were also assessed by TUNEL assay. The Morris water maze test showed that sevoflurane anesthesia induced spatial memory impairment in aging rats (P<0.05). The apoptotic neurons were condensed and had clumped chromatin with fragmentation of the nuclear membrane, verifying apoptotic degeneration in the sevoflurane group rats by TEM observation. The expressions of CHOP and caspase-12 increased, and the number of TUNEL positive cells of the hippocampus also increased in the sevoflurane group rats (P<0.05). The present results suggested that the long time exposure of sevoflurane could induce neuronal degeneration and cognitive impairment in aging rats. The ER stress mediated neurons apoptosis may play a role in the sevoflurane-induced memory impairment in aging rats.  相似文献   

16.
We have shown previously that subcytotoxic concentrations of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) inhibit axon outgrowth and are associated with increased neurofilament heavy chain (NF-H) phosphorylation in differentiating mouse N2a neuroblastoma cells while higher doses (> 100 microM) cause cell death. In this work we assessed the ability of potential neuroprotective agents to alleviate both MPTP-induced cell death (cytotoxicity) and MPTP-induced NF-H phosphorylation/reduction in axon outgrowth (neurotoxicity) in N2a cells induced to differentiate by dbcAMP. The neurotoxic effects of MPTP occurred in the absence of significant alterations in energy status or mitochondrial membrane potential. The hormone oestradiol (100 microM) reduced the cytotoxic effect of MPTP, but blocked di-butyryl cyclic AMP (dbcAMP)-induced differentiation, i.e. axon outgrowth. Both the cytotoxic and neurotoxic effects of MPTP were reduced by the monoamine oxidase (MAO) inhibitors deprenyl and, to a lesser extent, clorgyline. Alleviation of both neurotoxicity and cytotoxicity was also achieved by conditioned medium derived from rat C6 glioma cells. In contrast, whilst the p38 MAP kinase inhibitor, SB202190, protected cells against MPTP-induced neurotoxicity, it could not maintain cell viability at high MPTP exposures. In each case neuroprotection involved maintenance of the differentiating phenotype linked with attenuation of NF-H hyper-phosphorylation; the latter may represent a mechanism by which neuronal cells can moderate MPTP-induced neurotoxicity. The use of a simplified neuronal cell model, which expresses subtle biochemical changes following neurotoxic insult, could therefore provide a valuable tool for the identification of potential neuroprotective agents.  相似文献   

17.
Primary hippocampal neuronal cultures exhibited a concentration- and time-dependent loss of cells when exposed to ethanol (EtOH). EtOH-induced neurotoxicity was attenuated by 2,4-dimethoxybenzilidene anabaseine (DMXB) which selectively activates alpha7 nicotinic receptors in a concentration-dependent manner. We further investigated the mechanisms of the protective effect of DMXB on EtOH- induced neurotoxicity. We found that EtOH decreased the mitochondrial membrane potential and released cytochrome c from mitochondria at neurotoxic concentrations. DMXB (3 microm) attenuated both of these actions in a manner that was in turn blocked with the nicotinic antagonist methyllyconitine (MLA) 100 nm. Neither DMXB nor MLA alone affected these parameters. These results suggest that the neuroprotection conferred by alpha7 nicotinic receptor activation may be mediated, at least in part, through preventing the decrease in the mitochondrial membrane potential and the increase in the release of cytochrome c caused by EtOH.  相似文献   

18.
Mitochondrial uncoupling protein-4 (UCP4) enhances neuronal survival in 1-methyl-4-phenylpyridinium (MPP(+)) toxicity by suppressing oxidative stress and preserving intracellular ATP and mitochondrial membrane potential (MMP). NF-κB regulates neuronal viability via its complexes, p65 mediating cell death and c-Rel promoting cell survival. We reported previously that NF-κB mediates UCP4 neuroprotection against MPP(+) toxicity. Here, we investigated its link with the NF-κB c-Rel prosurvival pathway in alleviating mitochondrial dysfunction and oxidative stress. We overexpressed a c-Rel-encoding plasmid in SH-SY5Y cells and showed that c-Rel overexpression induced NF-κB activity without affecting p65 level. Overexpression of c-Rel increased UCP4 promoter activity and protein expression. Electrophoretic mobility shift assay showed that H(2)O(2) increased NF-κB binding to the UCP4 promoter and that NF-κB complexes were composed of p50/p50 and p50/c-Rel dimers. Under H(2)O(2)-induced oxidative stress, UCP4 knockdown significantly increased superoxide levels, decreased reduced glutathione (GSH) levels, and increased oxidized glutathione levels, compared to controls. UCP4 expression induced by c-Rel overexpression significantly decreased superoxide levels and preserved GSH levels and MMP under similar stress. These protective effects of c-Rel overexpression in H(2)O(2)-induced oxidative stress were significantly reduced after UCP4 knockdown, indicating that UCP4 is a target effector gene of the NF-κB c-Rel prosurvival pathway to mitigate the effects of oxidative stress.  相似文献   

19.
Activation of metabotropic glutamate receptor 5 (mGluR5) has been shown to reduce caspase-dependent apoptosis in primary neuronal cultures induced by staurosporine and etoposide. beta-Amyloid (Abeta)-induced neurotoxicity in culture appears to be in part caspase mediated. In the present studies the effects of treatment with an mGluR5 agonist or antagonist on Abeta-induced neuronal apoptosis were examined in rat cortical neuronal cultures. Pretreatment with the selective mGluR5 agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) markedly reduced the number of apoptotic cells after exposure to Abeta (25-35), as well as associated LDH release. Blockade of mGluR5 by the selective antagonist, 2-methyl-6-(phenylethynyl)pyridine (MPEP) attenuated these effects of CHPG. A similar neuroprotective effect of mGluR5 activation by CHPG was observed in cultures treated with full-length Abeta peptide (1-42). CHPG attenuated Abeta (25-35)-induced cytochrome c release and decreased levels of active caspase-3 protein. CHPG also reduced translocation of apoptosis-inducing factor (AIF) induced by Abeta (25-35). Thus, mGluR5 activation limits the release of mitochondrial proteins associated with induction of both caspase-dependent and -independent apoptosis.  相似文献   

20.
Qu M  Zhou Z  Chen C  Li M  Pei L  Chu F  Yang J  Wang Y  Li L  Liu C  Zhang L  Zhang G  Yu Z  Wang D 《Neurochemistry international》2011,59(8):1095-1103
Lycopene is a potent free radicals scavenger with demonstrated protective efficacy in several experimental models of oxidative damage. Trimethyltin (TMT) is an organotin compound with neurotoxic effects on the hippocampus and other limbic structures and is used to model neurodegenerative diseases targeting these brain areas. Oxidative stress is widely accepted as a central pathogenic mechanism of TMT-mediated neurotoxicity. The present study investigated whether the plant carotene lycopene protects against TMT-induced neurotoxicity in primary cultured rat hippocampal neurons. Lycopene pretreatment improved cell viability in TMT-treated hippocampal neurons and inhibited neuronal apoptosis. Microfluorometric imaging revealed that lycopene inhibited the accumulation of mitochondria-derived reactive oxygen species (ROS) during TMT exposure. Moreover, lycopene ameliorated TMT-induced activation of the mitochondrial permeability transition pore (mPTP) and the concomitant depolarization of the mitochondrial membrane potential (ΔΨm). Consequently, cytochrome c release from the mitochondria and ensuing caspase-3 activation were markedly reduced. These findings reveal that lycopene protects against TMT-induced neurotoxicity by inhibiting the mitochondrial apoptotic pathway. The anti-apoptotic effect of lycopene on hippocampal neurons highlights the therapeutic potential of plant-derived antioxidants against neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号