首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long intergenic non-coding RNA 152 (LINC00152) was reported to be tightly linked to tumorigenesis and progression in multiple cancers. However, its biological role and modulatory mechanism in papillary thyroid carcinoma (PTC) has not been elucidated. In this study, we determined the expression levels of LINC00152 in PTC tissues and cell lines by quantitative real time polymerase chain reaction (qRT-PCR). Cell proliferation, colony formation, migration, and invasion were measured by a Cell Counting Kit-8 assay, colony formation analysis, wound healing, and transwell invasion assay, respectively. A luciferase reporter assay and qRT-PCR were used to determine whether LINC00152 interacts with miR-497 directly. We established a xenograft mouse model to examine the underlying molecular mechanism and effect of LINC00152 on tumor growth in vivo. We found that LINC00152 expression was significantly increased in PTC tissues and derived cell lines. LINC00152 knockdown significantly inhibited proliferation, colony formation, migration, and invasion in vitro, and impaired tumor growth in vivo. We revealed that LINC00152 functioned as a competing endogenous RNA to the miR-497 sponge, downregulating its downstream target brain-derived neurotrophic factor (BDNF), which is an oncogene in thyroid cancer. These findings suggest that LINC00152 is responsible for PTC cell proliferation and invasion and exerts its function by regulating the miR-497/BDNF axis.  相似文献   

2.
Numerous studies have provided that long noncoding RNAs (lncRNAs) possess important roles in regulating tumorigenesis. However, up to data, the role of LINC00514 in cancer, including thyroid cancer, remains unknown. In the present study, we found that LINC00514 expression was significantly upregulated in papillary thyroid cancer (PTC) tissues by bioinformatics analysis. Loss-of-function studies revealed that LINC00514 silencing inhibited the proliferation, migration and invasion of PTC cells while promoting apoptosis in vitro. Moreover, LINC00514 knockdown suppressed PTC growth in vivo. RNA-FISH showed that LINC00514 mainly locates in the nucleus of PTC cells. Through bioinformatics prediction, we identified that LINC00514 served as the sponge for miR-204–3p, and miR-204–3p directly targeted CDC23. Thus, LINC00514 promoted CDC23 expression via restraining miR-204–3p activity, leading to PTC progression. In sum, our findings demonstrated that LINC00514 contributes to PTC progression and might be a potential target for PTC therapy.  相似文献   

3.
Long intergenic non-coding RNA 00152 (LINC00152) is aberrantly expressed in various human malignancies and plays an important role in the pathogenesis. Here, we found that LINC00152 is upregulated in hepatocellular carcinoma (HCC) tissues as compared to adjacent non-neoplastic tissues; gain-and-loss-of-function analyses in vitro showed that LINC00152 facilitates HCC cell cycle progression through regulating the expression of CCND1. LINC00152 knockdown inhibits tumorigenesis in vivo. MS2-RIP analysis indicated that LINC00152 binds directly to miR-193a/b-3p, as confirmed by luciferase reporter assays. Furthermore, ectopic expression of LINC00152 partially halted the decrease in CCND1 expression and cell proliferation capacity induced by miR-193a/b-3p overexpression. Thus, LINC00152 acts as a competing endogenous RNA (ceRNA) by sponging miR-193a/b-3p to modulate its target gene, CCND1. Our findings establish a ceRNA mechanism regulating cell proliferation in HCC via the LINC00152/miR-193a/b-3p/CCND1 signalling axis, and identify LINC00152 as a potential therapeutic target for HCC.  相似文献   

4.
An accumulation of evidence indicates that long noncoding RNAs are involved in the tumorigenesis and progression of pancreatic cancer (PC). In this study, we investigated the functions and molecular mechanism of action of LINC00941 in PC. Quantitative PCR was used to examine the expression of LINC00941 and miR-335-5p in PC tissues and cell lines, and to investigate the correlation between LINC00941 expression and clinicopathological features. Plasmid vectors or lentiviruses were used to manipulate the expression of LINC00941, miR-335-5p, and ROCK1 in PC cell lines. Gain or loss-of-function assays and mechanistic assays were employed to verify the roles of LINC00941, miR-335-5p, and ROCK1 in PC cell growth and metastasis, both in vivo and in vitro. LINC00941 and ROCK1 were found to be highly expressed in PC, while miR-335-5p exhibited low expression. High LINC00941 expression was strongly associated with larger tumor size, lymph node metastasis, and poor prognosis. Functional experiments revealed that LINC00941 silencing significantly suppressed PC cell growth, metastasis and epithelial–mesenchymal transition. LINC00941 functioned as a molecular sponge for miR-335-5p, and a competitive endogenous RNA (ceRNA) for ROCK1, promoting ROCK1 upregulation, and LIMK1/Cofilin-1 pathway activation. Our observations lead us to conclude that LINC00941 functions as an oncogene in PC progression, behaving as a ceRNA for miR-335-5p binding. LINC00941 may therefore have potential utility as a diagnostic and treatment target in this disease.Subject terms: Pancreatic cancer, Long non-coding RNAs  相似文献   

5.
Transforming growth factor β (TGFβ) is a prominent cytokine that promotes tumor progression by activating epithelial-to-mesenchymal transition (EMT). This study indicated that TGFβ exerted metastasis by inducing zinc finger E-box binding homeobox 1 (ZEB1) and a long noncoding RNA, LINC00273, expressions in A549 cells. Knocking down LINC00273 diminished TGFβ induced ZEB1 expression as well as metastasis. Mechanistically, LINC00273 acted as a molecular sponge of microRNA (miR)-200a-3p which liberate ZEB1 to perform its prometastatic functions. LINC00273 knockdown and miR200a3p mimic transfection of A549 cells were used for validating the link between TGFβ and LINC00273 induced metastasis. RNA pulldown and luciferase assay were performed to establish mir200a-3p-LINC00273 interaction. High expressions of LINC00273, TGFβ, and ZEB1 with concurrent low miR200a-3p expression had been verified in vivo and in patient samples. Overall, LINC00273 promoted TGFβ-induced lung cancer EMT through miR-200a-3p/ZEB1 feedback loop and may serve as a potential target for therapeutic intervention in lung cancer metastasis.  相似文献   

6.
Glioblastoma (GBM), a malignant and lethal tumor, remains a big threat to human health and life. Increasing explorations have confirmed that long noncoding RNAs are involved in the tumorigenesis and development of multiple cancers. Nevertheless, the regulatory mechanism of (long intergenic nonprotein coding RNA 1579 LINC01579) in GBM remains to be investigated. In this study, the expression of LINC01579 was upregulated in GBM cells and LINC01579 knockdown inhibited cell proliferation as well as promoted cell apoptosis. Additionally, LINC01579 acted as a sponge for miR-139-5p in GBM and eukaryotic translation initiation factor 4 gamma 2 (EIF4G2) was found to be a downstream target of miR-139-5p. Furthermore, the positive correlation of LINC01579 and EIF4G2 as well as the converse correlation between miR-139-5p and LINC01579 (or EIF4G2) were revealed by the experiments. Based on rescue assays, EIF4G2 overexpression or miR-139-5p inhibitor partially recovered the function of LINC01579 knockdown on cell proliferation and apoptosis. In summary, the results of this study verified that LINC01579 modulated cell proliferation and cell apoptosis in GBM by competitively binding with miR-139-5p to regulate EIF4G2, which provided a new clue to figure out potential therapy for patients suffered from GBM.  相似文献   

7.
Long noncoding RNAs (lncRNAs) have been shown to have critical regulatory roles in tumorigenesis. lncRNA LINC01561 (LINC01561) is a newly identified tumor-related lncRNA and its dysregulation has been demonstrated in several tumors. However, whether LINC01561 is involved in the progression of non-small-cell lung carcinoma (NSCLC) and its underlying mechanisms remain unknown. In this study, we first provided evidence that LINC01561 expressions were distinctly upregulated in NSCLC tissues and cell lines. Combining with bioinformatics assays and mechanism experiments, our group demonstrated that LINC01561 was activated by SOX2 in NSCLC. Clinical research revealed that upregulation of LINC01561 was related to poorer clinicopathologic features and shorter survival time. Functionally, suppression of LINC01561 exhibited tumor-suppressive functions through impairing cell proliferation, migration, and invasion as well as inducing apoptosis. Moreover, we verified that LINC01561 could directly bind to miR-760, isolating miR-760 from its target gene SHC SH2 domain-binding protein 1 (SHCBP1). We also found that SHCBP1 was lowly expressed in NSCLC and served as a tumor promoter. A functional study indicated that LINC01561 regulated SHCBP1 expression by competitively binding to miR-760. In summary, our findings indicated that SOX2-induced overexpression of LINC01561 promoted the proliferation and metastasis by acting as a competing endogenous RNA to modulate SHCBP1 by sponging miR-760.  相似文献   

8.
9.
Prostate cancer is the second most frequent malignancy in men worldwide, and its incidence is increasing. Therefore, it is urgently required to clarify the underlying mechanisms of prostate cancer. Although the long non-coding RNA LINC00115 was identified as an oncogene in several cancers, the expression and function of LINC00115 in prostate cancer have not been explored. Our results showed that LINC00115 was significantly up-regulated in prostate cancer tissues, which was significantly associated with a poor prognosis for prostate cancer patients. Functional studies showed that knockdown LINC00115 inhibited cell proliferation and invasion. In addition, LINC00115 served as a competing endogenous RNA (ceRNA) through sponging miR-212-5p to release Frizzled Family Receptor 5 (FZD5) expression. The expression of miR-212-5p was noticeably low in tumour tissues, and FZD5 expression level was down-regulated with the knockdown of LINC00115. Knockdown LINC00115 inhibited the Wnt/β‑catenin signalling pathway by inhibiting the expression of FZD5. Rescue experiments further showed that LINC00115 inhibits prostate cancer cell proliferation and invasion via targeting miR-212-5p/ FZD5/ Wnt/β-catenin axis. The present study provided clues that LINC00115 may be a promising novel therapeutic target for prostate cancer patients.  相似文献   

10.
Long noncoding RNAs have an essential role in the tumorigenesis of breast cancer (BC). Nonetheless, the consequences of long intergenic noncoding RNA 00641 (LINC00641) in BC remain unidentified. This study shows that LINC00641 expression level was decreased in BC tissues. LINC00641 expression level was negatively related to tumor size, lymph-node metastasis, as well as clinical stage. LINC00641 overexpression inhibited cell proliferation, migration, and invasion but stimulated apoptosis in BC cells. LINC00641 overexpression also remarkably reduced BC growth and metastasis in vivo. LINC00641 acts as a competitive endogenous RNA to sponge miR-194-5p. miR-194-5p level was higher in BC tissues and cells compared with normal-adjacent tissues and normal breast epithelial cell. miR-194-5p expression was negatively correlated with LINC00641 expression in BC tissues. miR-194-5p overexpression reversed the effects of LINC00641 on cell proliferation, cycle, apoptosis, migration, as well as invasion. In conclusion, LINC00641 inhibits BC cell proliferation, migration, as well as invasion by sponging miR-194-5p.  相似文献   

11.
12.
13.
14.
Esophageal squamous cell carcinoma (ESCC) is the most prevalent type in esophageal cancers. Despite accumulating achievements in treatments of ESCC, patients still suffer from recurrence because of the treatment failures, one of the reasons for which is radioresistance. Therefore, it is a necessity to explore the molecular mechanism underlying ESCC radioresistance. Long intergenic noncoding RNA 473 (LINC00473) has been reported to be aberrantly expressed in several human malignancies. However, its biological function in radiosensitivity of ESCC remains to be fully understood. This study explored the role of LINC00473 in radiosensitivity of ESCC cells and whether LINC00473 acted as a competing endogenous RNA to realize its modulation on radioresistance. We found that LINC00473 was markedly upregulated in ESCC tissues and cell lines, and its expression was remarkably related to cellular response to irradiation. In addition, knockdown of LINC00473 could sensitize ESCC cells to radiation in vitro. As for the underlying mechanism, we uncovered that there was a mutual inhibition between LINC00473 and miR-374a-5p. Spindlin1 (SPIN1) was verified as a downstream target of miR-374a-5p, and LINC00473 upregulated SPIN1 expression through negatively modulating miR-374a-5p expression. Furthermore, we revealed that SPIN1 could aggravate the radioresistance of ESCC cells. Finally, overexpression of SPIN1 reversed the LINC00473 silencing-enhanced radiosensitivity in ESCC cells. To sum up, we demonstrated that LINC00473 facilitated radioresistance by regulating the miR-374a-5p/SPIN1 axis in ESCC.  相似文献   

15.
Colorectal cancer is one of the most common and leading malignancies globally. Long noncoding RNAs (lncRNAs) function as potentially critical regulator in colorectal cancer. LINC01234, a novel lncRNA in tumor biology, regulates the progression of various tumors. However, the tumorigenic mechanism of LINC01234 in colorectal cancer is still unclear. This study was performed with the aim to prospectively investigate clinical significance, effect, and mechanism of lncRNA LINC01234 in colorectal cancer. First, we found that LINC01234, localized in the cytoplasm, was increased in both colorectal cancer cell lines and tissues. Subsequent functional assays suggested LINC01234 knockdown suppressed cell proliferation, migration, and invasion of colorectal cancer cells, while blocked cell cycle and induced cell apoptosis. Moreover, we identified that miR-1284 was target of LINC01234, we further demonstrated a negative correlation with LINC01234 in colorectal cancer tissues and cells. Furthermore, miR-1284 targeted and suppressed tumor necrosis factor receptor–associated factor 6 (TRAF6). Loss-of-function assay revealed that LINC01234 silencing suppressed colorectal cancer progression through inhibition of miR-1284. In vivo subcutaneous xenotransplanted tumor model indicated LINC01234 knockdown inhibited in vivo tumorigenic ability of colorectal cancer via downregulation of TRAF6. Collectively, this study clarified the biological significance of LINC01234/miR-1284/TRAF6 axis in colorectal cancer progression, providing insights into LINC01234 as novel potential therapeutic target for colorectal cancer therapeutic from bench to clinic.  相似文献   

16.
17.
18.
19.
Long noncoding RNAs (lncRNAs) regulate multiple biological effects in cancers. Recently, RNA methylation has been found to modify not only coding RNAs but also some noncoding RNAs. How RNA methylation affects lncRNAs to affect colorectal cancer (CRC) progression remains elusive. The expression of LINC01559 was explored through RNA sequencing, quantitative real-time PCR (qRT-PCR) and in situ hybridization (ISH). The preliminary exploration of its function was performed using Western blotting (WB) and immunohistochemistry (IHC). Functional experiments in vitro and in vivo were conducted to explore the biological functions of LINC01559 in CRC. The LINC01559/miR-106-5p/PTEN axis was verified through fluorescence in situ hybridization (FISH), luciferase assays, and rescue experiments. RIP-sequencing, m6A RNA immunoprecipitation (MeRIP) assays and bioinformatic analysis were conducted to determine the upstream mechanism of LINC01559. The results showed that LINC01559 was downregulated in CRC compared with normal controls. Lower expression of LINC01559 in CRC patients predicted a poor prognosis. In addition, PTEN was found to be positively correlated with LINC01559, and miR-106b-5p could be the link between LINC01559 and PTEN. Then, silencing LINC01559 restored the malignant phenotype of CRC cells, while cotransfection of miR-106b-5p inhibitor neutralized this effect. Mechanistically, we found abundant m6A modification sites on LINC01559. Then, we uncovered these sites as potential targets of METTL3 through experiments in vivo. The results revealed a negative functional regulation of the LINC01559/miR-106b-5p/PTEN axis in CRC progression and explored a new mechanism of METTL3-mediated m6A modification on LINC01559. These results elucidate a novel potential therapeutic target for CRC treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号