首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pancreas is a heterogeneous organ mixed with both exocrine and endocrine cells. The pancreas is involved in metabolic activities with the endocrine cells participating in the regulation of blood glucose, while the exocrine portion provides a compatible environment for the pancreatic islets and is responsible for secretion of digestive enzymes. The purpose of this study was to identify pancreatic proteins that are differentially expressed in normal mice and those with diet-induced type 2 diabetes (T2DM). In this study, C57BL/6J male mice fed a high fat diet became obese and developed T2DM. The pancreatic protein profiles were compared between control and diabetic mice using two-dimensional gel electrophoresis. Differentially expressed protein "spots" were identified by mass spectrometry. REG1 and REG2 proteins, which may be involved in the proliferation of pancreatic beta cells, were up-regulated very early in the progression of obese mice to T2DM. Glutathione peroxidase, which functions in the clearance of reactive oxidative species, was found to be down-regulated in the diabetic mice at later stages. The RNA levels encoding REG2 and glutathione peroxidase were compared by Northern blot analysis and were consistent to the changes in protein levels between diabetic and control mice. The up-regulation of REG1 and REG2 suggests the effort of the pancreas in trying to ameliorate the hyperglycemic condition by stimulating the proliferation of pancreatic beta cells and enhancing the subsequent insulin secretion. The down-regulation of glutathione peroxidase in pancreas could contribute to the progressive deterioration of beta cell function due to the hyperglycemia-induced oxidative stress.  相似文献   

2.
3.
Porcine epidemic diarrhea virus (PEDV) causes an acute, highly contagious, and devastating viral enteric disease with a high mortality rate in suckling pigs. A large‐scale outbreak of PED occurred in China in 2010, with PEDV emerging in the United States in 2013 and spreading rapidly, posing significant economic and public health concerns. In this study, LC–MS/MS coupled to iTRAQ labeling was used to quantitatively identify differentially expressed cellular proteins in PEDV‐infected Vero cells. We identified 49 differentially expressed cellular proteins, of which 8 were upregulated and 41 downregulated. These differentially expressed proteins were involved in apoptosis, signal transduction, and stress responses. Based on these differentially expressed proteins, we propose that PEDV might utilize apoptosis and extracellular signal regulated kinases pathways for maximum viral replication. Our study is the first attempt to analyze the protein profile of PEDV‐infected cells by quantitative proteomics, and we believe our findings provide valuable information with respect to better understanding the host response to PEDV infection.  相似文献   

4.
Iron-sulfur (Fe-S) clusters are important prosthetic groups in all organisms. The biosynthesis of Fe-S clusters has been studied extensively in bacteria and yeast. By contrast, much remains to be discovered about Fe-S cluster biogenesis in higher plants. Plant plastids are known to make their own Fe-S clusters. Plastid Fe-S proteins are involved in essential metabolic pathways, such as photosynthesis, nitrogen and sulfur assimilation, protein import, and chlorophyll transformation. This review aims to summarize the roles of Fe-S proteins in essential metabolic pathways and to give an overview of the latest findings on plastidic Fe-S assembly. The plastidic Fe-S biosynthetic machinery contains many homologues of bacterial mobilization of sulfur (SUF) proteins, but there are additional components and properties that may be plant-specific. These additional features could make the plastidic machinery more suitable for assembling Fe-S clusters in the presence of oxygen, and may enable it to be regulated in response to oxidative stress, iron status and light.  相似文献   

5.
6.
7.
Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein that regulates several cellular events, including inflammation and tissue remodelling. In this study, we investigated the tissue-specific expression of SPARC in streptozotocin (STZ)-induced diabetes, and found that SPARC was significantly up-regulated in the liver while down-regulated in the pancreas of STZ-induced diabetic rats. Chronic inflammation occurred in the diabetic pancreas accompanied by up-regulation of CCAAT/enhancer-binding protein beta (C/EBPβ) and its targets (TNFα, Il6, CRP, and Fn1) as well as myeloperoxidase (Mpo) and C-X-C chemokine receptor type 2 (Cxcr2). Diabetic liver showed significant up-regulation of Tgfb1 as well as moderately less up-regulated TNFα and reduced Fn1, resulting in elevated fibrogenesis. PARP-1 was not up-regulated during CD95-mediated apoptosis, resulting in restoration of high ATP levels in the diabetic liver. On the contrary, CD95-dependent apoptosis was not observed in the diabetic pancreas due to up-regulation of PARP-1 and ATP depletion, resulting in necrosis. The cytoprotective machinery was damaged by pancreatic inflammation, whereas adequate antioxidant capacity indicates low oxidative stress in the diabetic liver. High and low cellular insulin content was found in the diabetic liver and pancreas, respectively. Furthermore, we identified six novel interacting partner proteins of SPARC by co-immunoprecipitation in the diabetic liver and pancreas, and their interactions with SPARC were predicted by bioinformatics tools. Taken together, opposite expression of SPARC in the diabetic liver and pancreas may be related to inflammation and immune cell infiltration, degrees of apoptosis and fibrosis, cytoprotective machinery, and cellular insulin levels.  相似文献   

8.
The endoplasmic reticulum‐associated degradation (ERAD) machinery selects native and misfolded polypeptides for dislocation across the ER membrane and proteasomal degradation. Regulated degradation of native proteins is an important aspect of cell physiology. For example, it contributes to the control of lipid biosynthesis, calcium homeostasis and ERAD capacity by setting the turnover rate of crucial regulators of these pathways. In contrast, degradation of native proteins has pathologic relevance when caused by viral or bacterial infections, or when it occurs as a consequence of dysregulated ERAD activity. The efficient disposal of misfolded proteins prevents toxic depositions and persistent sequestration of molecular chaperones that could induce cellular stress and perturb maintenance of cellular proteostasis. In the first section of this review, we survey the available literature on mechanisms of selection of native and non‐native proteins for degradation from the ER and on how pathogens hijack them. In the second section, we highlight the mechanisms of ERAD activity adaptation to changes in the ER environment with a particular emphasis on the post‐translational regulatory mechanisms collectively defined as ERAD tuning.   相似文献   

9.
Hydrogen peroxide (H2O2) plays a dual role in plants as the toxic by-product of normal cell metabolism and as a regulatory molecule in stress perception and signal transduction. However, a clear inventory as to how this dual function is regulated in plants is far from complete. In particular, how plants maintain survival under oxidative stress via adjustments of the intercellular metabolic network and antioxidative system is largely unknown. To investigate the responses of rice seedlings to H2O2 stress, changes in protein expression were analyzed using a comparative proteomics approach. Treatments with different concentrations of H2O2 for 6 h on 12-day-old rice seedlings resulted in several stressful phenotypes such as rolling leaves, decreased photosynthetic and photorespiratory rates, and elevated H2O2 accumulation. Analysis of approximately 2000 protein spots on each two-dimensional electrophoresis gel revealed 144 differentially expressed proteins. Of them, 65 protein spots were up-regulated, and 79 were down-regulated under at least one of the H2O2 treatment concentrations. Furthermore 129 differentially expressed protein spots were identified by mass spectrometry to match 89 diverse protein species. These identified proteins are involved in different cellular responses and metabolic processes with obvious functional tendencies toward cell defense, redox homeostasis, signal transduction, protein synthesis and degradation, photosynthesis and photorespiration, and carbohydrate/energy metabolism, indicating a good correlation between oxidative stress-responsive proteins and leaf physiological changes. The abundance changes of these proteins, together with their putative functions and participation in physiological reactions, produce an oxidative stress-responsive network at the protein level in H2O2-treated rice seedling leaves. Such a protein network allows us to further understand the possible management strategy of cellular activities occurring in the H2O2-treated rice seedling leaves and provides new insights into oxidative stress responses in plants.  相似文献   

10.
The Burkholderia cepacia complex is a group of Burkholderia species that are opportunistic pathogens causing high mortality rates in patients with cystic fibrosis. An environmental stress often encountered by these soil-dwelling and pathogenic bacteria is phosphorus limitation, an essential element for cellular processes. Here, we describe cellular and extracellular proteins differentially regulated between phosphate-deplete (0 mM, no added phosphate) and phosphate-replete (1 mM) growth conditions using a comparative proteomics (LC–MS/MS) approach. We observed a total of 128 and 65 unique proteins were downregulated and upregulated respectively, in the B. cenocepacia proteome. Of those downregulated proteins, many have functions in amino acid transport/metabolism. We have identified 24 upregulated proteins that are directly/indirectly involved in inorganic phosphate or organic phosphorus acquisition. Also, proteins involved in virulence and antimicrobial resistance were differentially regulated, suggesting B. cenocepacia experiences a dramatic shift in metabolism under these stress conditions. Overall, this study provides a baseline for further research into the biology of Burkholderia in response to phosphorus stress.  相似文献   

11.
Using an integrated approach incorporating proteomics, metabolomics and published mRNA data, we have investigated the effects of hydrogen peroxide on wild type and a Sty1p-deletion mutant of the fission yeast Schizosaccharomyces pombe. Differential protein expression analysis based on the modification of proteins with matched fluorescent labelling reagents (2-D-DIGE) is the foundation of the quantitative proteomics approach. This study identifies 260 differentially expressed protein isoforms from 2-D-DIGE gels using MALDI MS and reveals the complexity of the cellular response to oxidative stress and the dependency on the Sty1p stress-activated protein kinase. We show the relationship between these protein changes and mRNA expression levels identified in a parallel whole genome study, and discuss the regulatory mechanisms involved in protecting cells against hydrogen peroxide and the involvement of Sty1p-dependent stress-activated protein kinase signalling. Metabolomic profiling of 29 intermediates using 1H NMR was also conducted alongside the protein analysis using the same sample sets, allowing examination of how the protein changes might affect the metabolic pathways and biological processes involved in the oxidative stress response. This combined analysis identifies a number of interlinked metabolic pathways that exhibit stress- and Sty1-dependent patterns of regulation.  相似文献   

12.
Once secretory proteins have been targeted to the endoplasmic reticulum (ER) lumen, the proteins typically remain partitioned from the cytosol. If the secretory proteins misfold, they can be unfolded and retrotranslocated into the cytosol for destruction by the proteasome by ER‐Associated protein Degradation (ERAD). Here, we report that correctly folded and targeted luminal ER fluorescent protein reporters accumulate in the cytosol during acute misfolded secretory protein stress in yeast. Photoactivation fluorescence microscopy experiments reveal that luminal reporters already localized to the ER relocalize to the cytosol, even in the absence of essential ERAD machinery. We named this process “ER reflux.” Reflux appears to be regulated in a size‐dependent manner for reporters. Interestingly, prior heat shock stress also prevents ER stress‐induced reflux. Together, our findings establish a new ER stress‐regulated pathway for relocalization of small luminal secretory proteins into the cytosol, distinct from the ERAD and preemptive quality control pathways. Importantly, our results highlight the value of fully characterizing the cell biology of reporters and describe a simple modification to maintain luminal ER reporters in the ER during acute ER stress.  相似文献   

13.

Key message

Cowpea cultivars differing in salt tolerance reveal differences in protein profiles and adopt different strategies to overcome salt stress. Salt-tolerant cultivar shows induction of proteins related to photosynthesis and energy metabolism.

Abstract

Salinity is a major abiotic stress affecting plant cultivation and productivity. The objective of this study was to examine differential proteomic responses to salt stress in leaves of the cowpea cultivars Pitiúba (salt tolerant) and TVu 2331 (salt sensitive). Plants of both cultivars were subjected to salt stress (75 mM NaCl) followed by a recovery period of 5 days. Proteins extracted from leaves of both cultivars were analyzed by two-dimensional electrophoresis (2-DE) under salt stress and after recovery. In total, 22 proteins differentially regulated by both salt and recovery were identified by LC–ESI–MS/MS. Our current proteome data revealed that cowpea cultivars adopted different strategies to overcome salt stress. For the salt-tolerant cultivar (Pitiúba), increase in abundance of proteins involved in photosynthesis and energy metabolism, such as rubisco activase, ribulose-5-phosphate kinase (Ru5PK) (EC 2.7.1.19), glycine decarboxylase (EC 1.4.4.2) and oxygen-evolving enhancer (OEE) protein 2, was observed. However, these vital metabolic processes were more profoundly affected in salt-sensitive cultivar (TVu), as indicated by the down-regulation of OEE protein 1, Mn-stabilizing protein-II, carbonic anhydrase (EC 4.2.1.1) and Rubisco (EC 4.1.1.39), leading to energy reduction and a decline in plant growth. Other proteins differentially regulated in both cultivars corresponded to different physiological responses. Overall, our results provide information that could lead to a better understanding of the molecular basis of salt tolerance and sensitivity in cowpea plants.  相似文献   

14.
The ubiquitin-proteasome system (UPS) has been implicated in the pathogenesis of many neurodegenerative diseases. Endoplasmic reticulum (ER) stress is shown to play a pathological role in the development of diabetes and its complications. Hence, the current study is aimed to investigate the role of UPS and ER stress in the cerebral cortex of diabetic rats and examine the therapeutic effect of 4-phenylbutyric acid (4-PBA), an ER stress inhibitor. Male Sprague-Dawley rats were divided into three groups: control, diabetes, and diabetes plus 4-PBA treatment group. Diabetes was induced by single intraperitoneal streptozotocin injection (37 mg/kg body weight [bw]), and 4-PBA was administered (40 mg/kg bw/d, intraperitoneal) for 2 months, starting from 2 months of diabetes induction. At the end of 4 months, cerebral cortex was collected for analysis. Declined proteasome activity and ubiquitin C-terminal hydrolase (UCH)-L1 expression, increased ubiquitinated proteins, and apoptosis were observed in the diabetic rats. The expression of the ubiquitin-activating enzyme E1, UCHL5, and ER stress markers (ATF6, pPERK, and CHOP) was markedly elevated, whereas the expression of ER-associated protein degradation (ERAD) components was downregulated in the diabetic rats. 4-PBA intervention attenuated ER stress, alterations in UPS, and ERAD components in diabetic rats. Importantly, neuronal apoptosis was lowered in 4-PBA-treated diabetic rats. Our observations demonstrate that altered UPS could be one of the underlying mechanisms of neuronal apoptosis in diabetes and chemical chaperones such as 4-PBA could be potential candidates for preventing these alterations under hyperglycemic conditions.  相似文献   

15.
SS Cao  RJ Kaufman 《Current biology : CB》2012,22(16):R622-R626
In eukaryotic cells, the endoplasmic reticulum (ER) is a membrane-enclosed interconnected organelle responsible for the synthesis, folding, modification, and quality control of numerous secretory and membrane proteins. The processes of protein folding and maturation are highly assisted and scrutinized but are also sensitive to changes in ER homeostasis, such as Ca(2+) depletion, oxidative stress, hypoxia, energy deprivation, metabolic stimulation, altered glycosylation, activation of inflammation, as well as increases in protein synthesis or the expression of misfolded proteins or unassembled protein subunits. Only properly folded proteins can traffic to the Golgi apparatus, whereas those that misfold are directed to ER-associated degradation (ERAD) or to autophagy. The accumulation of unfolded/misfolded proteins in the ER activates signaling events to orchestrate adaptive cellular responses. This unfolded protein response (UPR) increases the ER protein-folding capacity, reduces global protein synthesis, and enhances ERAD of misfolded proteins.  相似文献   

16.
《Free radical research》2013,47(5):587-598
Abstract

Despite the fact that gender dimorphism in diet-induced oxidative stress is associated with steroid sex hormones, there are some contradictory results concerning roles of steroid hormones in gender dimorphism. To evaluate the role of gender dimorphism as well as the effects of sex steroid hormones in response to high-fat diet (HFD)-induced oxidative stress, we measured cellular levels of major antioxidant proteins in the liver, abdominal white adipose tissue, and skeletal muscles of Sprague-Dawley rats following HFD or sex hormone treatment using Western blot analysis. Animal experiments revealed that 17β-estradiol, (E2) and dihydrotestosterone (DHT) negatively and positively affected body weight gain, respectively. Interestingly, plasma levels of malondialdehyde (MDA) increased in both E2- and DHT-treated rats. We also observed that cellular levels of classical antioxidant proteins, including catalase, glutathion peroxidase, peroxiredoxin, superoxide dismutase, and thioredoxin, were differentially regulated hormone- and gender-dependent manner in various metabolic tissues. In addition, tissue-specific expression of DJ-1 protein with respect to HFD-induced oxidative stress in association with sex steroid hormone treatment was observed for the first time. Taken together, our data show that females were more capable at overcoming oxidative stress than males through feasible expression of antioxidant proteins in metabolic tissues. Although the exact regulatory mechanism of sex hormones in diet-induced oxidative stress could not be fully elucidated, the current data will provide clues regarding the tissue-specific roles of antioxidant proteins during HFD-induced oxidative stress in association with sex steroid hormones.  相似文献   

17.
Non‐obese diabetic (NOD) mice exhibit impaired fertility and decreased litter size when compared to wild type (WT) mice. However, it is unclear why allogeneic pregnant NOD mice are prone to spontaneous embryo loss. Herein, two‐dimensional gel electrophoresis (2‐DE) and mass spectrometry (MS) were used to detect differentially expressed proteins in the uterine lymphocytes isolated from these mice and WT BALB/c controls. We found 24 differentially expressed proteins. The differential expression of 10 of these proteins was further confirmed by Western blot analysis. Out of the 24 identified proteins, 20 were expressed in uterine lymphocytes of WT mice at a level at least 2 times higher than in NOD mice, whereas 4 were down‐regulated. Western blot analysis confirmed that 8 proteins were up‐regulated and 2 proteins were down‐regulated in WT mice compared with NOD mice, consistent with the results of 2‐DE and MS. Additionally, most of the highly expressed proteins in WT uterine lymphocytes were expressed at a significantly lower level in the corresponding splenic group (17/20). These results suggest that up‐regulated expression of these proteins may be specific to uterine lymphocytes. Reported functions of the highly expressed proteins affect key functions during pregnancy, including cell movement, cell cycle control, and metabolisms. Finally, we analyzed the constitutional ratio of CD3+ and CD49b+ cells in the isolated lymphocytes by flow cytometry. Our results suggest that the differentially expressed proteins may participate in the modulation of embryo implantation and early‐stage development of embryos, and subsequently influence pregnancy outcome. J. Cell. Biochem. 108: 447–457, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
A variety of debilitating diseases including diabetes, Alzheimer's, Huntington's, Parkinson's, and prion-based diseases are linked to stress within the endoplasmic reticulum (ER). Using S. cerevisiae, we sought to determine the relationship between protein misfolding, ER stress, and cell death. In the absence of ERV29, a stress-induced gene required for ER associated degradation (ERAD), misfolded proteins accumulate in the ER leading to persistent ER stress and subsequent cell death. Cells alleviate ER stress through the unfolded protein response (UPR); however, if stress is sustained the UPR contributes to cell death by causing the accumulation of reactive oxygen species (ROS). ROS are generated from two sources: the UPR-regulated oxidative folding machinery in the ER and mitochondria. Our results demonstrate a direct mechanism(s) by which misfolded proteins lead to cellular damage and death.  相似文献   

19.
Proteins that fail to fold or assemble with partner subunits are selectively removed from the endoplasmic reticulum (ER) via the ER-associated degradation (ERAD) pathway. Proteins selected for ERAD are polyubiquitinated and retrotranslocated into the cytosol for degradation by the proteasome. Although it is unclear how proteins are initially identified by the ERAD system in mammalian cells, OS-9 was recently proposed to play a key role in this process. Here we show that OS-9 is upregulated in response to ER stress and is associated both with components of the ERAD machinery and with ERAD substrates. Using RNA interference, we show that OS-9 is required for efficient ubquitination of glycosylated ERAD substrates, suggesting that it helps transfer misfolded proteins to the ubiquitination machinery. We also find that OS-9 binds to a misfolded nonglycosylated protein destined for ERAD, but not to the properly folded wild-type protein. Surprisingly, however, OS-9 is not required for ubiquitination or degradation of this nonglycosylated ERAD substrate. We propose a model in which OS-9 recognises terminally misfolded proteins via polypeptide-based rather than glycan-based signals, but is only required for transferring those bearing N-glycans to the ubiquitination machinery.  相似文献   

20.
Geobacter species predominate in aquatic sediments and submerged soils where organic carbon sources are oxidized with the reduction of Fe(III). The natural occurrence of Geobacter in some waste sites suggests this microorganism could be useful for bioremediation if growth and metabolic activity can be regulated. 2-DE was used to monitor the steady state protein levels of Geobacter metallireducens grown with either Fe(III) citrate or nitrate to elucidate metabolic differences in response to different terminal electron acceptors present in natural environments populated by Geobacter. Forty-six protein spots varied significantly in abundance (p<0.05) between the two growth conditions; proteins were identified by tryptic peptide mass and peptide sequence determined by MS/MS. Enzymes involved in pyruvate metabolism and the tricarboxylic acid (TCA) cycle were more abundant in cells grown with Fe(III) citrate, while proteins associated with nitrate metabolism and sensing cellular redox status along with several proteins of unknown function were more abundant in cells grown with nitrate. These results indicate a higher level of flux through the TCA cycle in the presence of Fe(III) compared to nitrate. The oxidative stress response observed in previous studies of Geobacter sulfurreducens grown with Fe(III) citrate was not seen in G. metallireducens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号