首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aberrant microRNAs are widely identified in multiple cancers, including lung cancer. miR-135a-5p can function as a significant tumor regulator in diverse cancers via impacting multiple genes in oncogenic pathways. Nevertheless, the biological role of miR-135a-5p in lung cancer is poorly known. Here, we investigated its function in lung cancer. As exhibited, miR-135a-5p was elevated in lung cancer cells in contrast to BEAS-2B cells. Then, we inhibited miR-135a-5p expression by transfecting LV-anti-miR-135a-5p into lung cancer cells. As displayed, miR-135a-5p was obviously reduced in A549 and H1299 cells. Knockdown of miR-135a-5p repressed lung cancer cell growth and cell proliferation. Meanwhile, cell colony formation capacity was depressed, cell apoptosis was enhanced and cell cycle progression was blocked in G1 phase by inhibition of miR-135a-5p in vitro. Additionally, the migration and invasion of A549 and H1299 cells was strongly depressed by LV-anti-miR-135a-5p. For another, by using informatics analysis, lysyl oxidase-like 4 (LOXL4) was speculated as the downstream target of miR-135a-5p. We validated their direct correlation and moreover, overexpression of miR-135a-5p restrained LOXL4 levels in lung cancer cells. Subsequently, we proved that miR-135a-5p promoted lung cancer development via targeting LOXL4 by carrying out the in vivo assays. Taken these together, our study revealed miR-135a-5p might be indicated as a perspective for lung cancer via targeting LOXL4.  相似文献   

2.
MicroRNAs have been reported to be closely related to the development of human lung cancers. However, the functions of microRNAs in non-small cell lung cancer (NSCLC) remain largely undefined. Here, we investigated the role of microRNA-193b (miR-193b) in NSCLC. Our data showed that miR-193b was markedly down-regulated in NSCLC cancer tissues compared with adjacent normal tissues. The NSCLC cell line (A549) transfected with the miR-193b exhibited significantly decreased proliferation, migration, and invasion capacities when compared with the control cells. In contrast, inhibition of miR-193b increased the proliferation, migration, and invasion of A549 cells. Moreover, miR-193b repressed the expressions of cyclin D1 and urokinase-type plasminogen activator in A549 cells. These data suggest that miR-193b is a tumor suppressor in NSCLC.  相似文献   

3.
MiR-217 can function as an oncogene or a tumour suppressor gene depending on cell type. However, the function of miR-217 in lung cancer remains unclear to date. This study aims to evaluate the function of miR-217 in lung cancer and investigate its effect on the sensitivity of lung cancer cells to cisplatin. The expression of miR-217 was detected in 100 patients by real-time PCR. The effects of miR-217 overexpression on the proliferation, apoptosis, migration and invasion of SPC-A-1 and A549 cells were investigated. The target gene of miR-217 was predicted by Targetscan online software, screened by dual luciferase reporter gene assay and demonstrated by Western blot. Finally, the effects of miR-217 up-regulation on the sensitivity of A549 cells to cisplatin were determined. The expression of miR-217 was significantly lower in lung cancer tissues than in noncancerous tissues (p < 0.001). The overexpression of miR-217 significantly inhibited the proliferation, migration and invasion as well as promoted the apoptosis of lung cancer cells by targeting KRAS. The up-regulation of miR-217 enhanced the sensitivity of SPC-A-1 and A549 cells to cisplatin. In conclusion, miR-217 suppresses tumour development in lung cancer by targeting KRAS and enhances cell sensitivity to cisplatin. Our results encourage researchers to use cisplatin in combination with miR-217 to treat lung cancer. This regime might lead to low-dose cisplatin application and cisplatin side-effect reduction.  相似文献   

4.
目的: 探讨miR-670-5p对肺癌细胞增殖、迁移和侵袭的影响,分析其调控WW结构域氧化还原酶基因(WWOX)的机制。方法: 收集2016年1月至2017年10月收治的28例肺癌组织和对应癌旁组织,实时荧光定量PCR(RT-qPCR)检测肺癌组织、癌旁组织中miR-670-5p的表达水平。将肺癌细胞A549分为anti-miR-NC组(转染anti-miR-NC)、anti-miR-670-5p组(转染anti-miR-670-5p)、anti-miR-670-5p+si-NC组(转染anti-miR-670-5p与si-NC)、anti-miR-670-5p+si-WWOX组(转染anti-miR-670-5p与si-WWOX)。转染48 h后,RT-qPCR或蛋白质印记(Western blot)检测转染效果。细胞计数试剂盒(CCK-8)检测细胞活力;Transwell实验检测细胞迁移和侵袭能力;Western blot检测P21、上皮细胞钙粘蛋白(E-cadherin)和基质金属蛋白酶2(MMP-2)蛋白的表达水平。双荧光素酶报告基因实验和Western blot验证miR-670-5p和WWOX的靶向关系。结果: 肺癌组织中miR-670-5p的表达水平较癌旁组织显著升高(P<0.05)。抑制miR-670-5p可抑制MMP-2蛋白表达(P<0.05),促进P21和E-cadherin表达(P<0.05),抑制A549细胞增殖、迁移和侵袭(P<0.05)。WWOX是miR-670-5p的靶基因,miR-670-5p负调控WWOX表达。抑制WWOX可部分逆转anti-miR-670-5p对A549细胞增殖、迁移和侵袭的影响(P<0.05)。结论: miR-670-5p通过靶向WWOX能够促进肺癌细胞增殖、迁移、侵袭。  相似文献   

5.
目的:通过体外实验探讨miR-575对非小细胞肺癌(NSCLC)细胞增殖与侵袭能力的影响及相关机制。方法:采用实时定量PCR法检测不同非小细胞肺癌细胞系中miR-575、BLID的表达;CCK-8法检测转染miR-575模拟物、抑制因子后不同时间A549细胞增殖情况的变化;Transwell法检测A549细胞的侵袭情况;Targetcan法及双荧光素酶检测miR-575对BLID 3'UTR端的靶向作用;Western blot法检测BLID蛋白的表达。结果:A549、SPC-A1、H1299、H1650等人非小细胞肺癌细胞系中miR-575的表达均显著高于永生化的人支气管上皮细胞系16HBE(P0.001)。MiR-575模拟物转染的A549细胞miR-575的表达明显高于对照组(P0.001),同时细胞的增殖和侵袭力增强(P0.05);反之,miR-575抑制因子转染的A549细胞miR-575的表达显著降低,且细胞的增殖和侵袭力明显降低(P0.01)。Targetscan法预测BLID可能是miR-575的下游靶基因,荧光素酶结果显示miR-575不仅能够有效抑制野生型BLID 3'UTR端的荧光素酶反应(P0.01),而且能够降低BLID的蛋白表达量(P0.01)。实时定量PCR结果显示BLID在NSCLC细胞系中均呈现显著的低表达(P0.001),且转染BLID后,NSCLC细胞的增殖和细胞侵袭被明显抑制(P0.05),而当miR-575与BLID共转染时,miR-575能够逆转BLID所抑制的细胞增殖和侵袭(P0.01)。结论:在NSCLC细胞系中,miR-575的表达上调,且能够通过直接作用于下游靶点抑癌基因BLID从而促非小细胞肺癌细胞增殖及侵袭。  相似文献   

6.
Lung cancer is the major cause of cancer death globally. MicroRNAs are evolutionally conserved small noncoding RNAs that are critical for the regulation of gene expression. Aberrant expression of microRNA (miRNA) has been implicated in cancer initiation and progression. In this study, we demonstrated that the expression of miR-429 are often upregulated in non-small cell lung cancer (NSCLC) compared with normal lung tissues, and its expression level is also increased in NSCLC cell lines compared with normal lung cells. Overexpression of miR-429 in A549 NSCLC cells significantly promoted cell proliferation, migration and invasion, whereas inhibition of miR-429 inhibits these effects. Furthermore, we demonstrated that miR-429 down-regulates PTEN, RASSF8 and TIMP2 expression by directly targeting the 3′-untranslated region of these target genes. Taken together, our results suggest that miR-429 plays an important role in promoting the proliferation and metastasis of NSCLC cells and is a potential target for NSCLC therapy.  相似文献   

7.
摘要 目的:探讨余甘子提取物对肺癌细胞A549增殖、迁移和侵袭的影响及机制。方法:体外培养A549细胞,分为对照组、不同剂量(低、中、高剂量)余甘子提取物组、si-NC组、si-LINC01772组、高剂量余甘子提取物+pcDNA组和高剂量余甘子提取物+pcDNA-LINC01772组,细胞计数试剂盒(CCK-8)法和克隆形成实验检测细胞增殖,划痕实验检测细胞迁移,嵌入式细胞共培养法(Transwell)检测细胞侵袭,免疫印迹法(Western Blot)检测细胞中上皮型钙黏蛋白(E-cadherin)和神经型钙黏蛋白(N-cadherin)蛋白表达水平,实时荧光定量PCR(RT-qPCR)检测LINC01772和miR-153表达水平。双荧光素酶报告基因实验验证LINC01772和miR-153调控关系。结果:与对照组相比,不同剂量余甘子提取物组A549细胞中LINC01772表达降低,且光密度值(OD值)、克隆形成数、迁移以及侵袭细胞数减少(P<0.05),而miR-153含量与E-cadherin蛋白表达升高(P<0.05),且呈剂量依赖性(P<0.05)。LINC01772在A549细胞中负调控miR-153表达。与si-NC组相比,si-LINC01772组A549细胞增殖,侵袭及迁移能力受到抑制(P<0.05)。与高剂量余甘子提取物+pcDNA组相比,高剂量余甘子提取物+pcDNA-LINC01772组A549细胞增殖,侵袭及迁移能力增强(P<0.05)。结论:余甘子提取物可能通过调控LINC01772/miR-153轴抑制肺癌细胞A549增殖、迁移和侵袭,其可能通过下调LINC01772进而上调miR-153表达发挥作用,具有开发为治疗肺癌药物的潜在价值。  相似文献   

8.
MicroRNAs plays an important role in the ccurrence and development of non–small-cell lung cancer (NSCLC). miR-497-5p has been reported to function as a tumor suppressor in various cancers. However, the role of miR-497-5p in NSCLC remains poorly understood. In this study, we aimed to investigate the biological role and potential molecular mechanism of miR-497-5p in NSCLC. Our results showed that the messenger RNA (mRNA) expression level of miR-497-5p was notably downregulated in human NSCLC tissues and cell lines. miR-497-5p overexpression remarkably inhibited NSCLC cell proliferation and increased cell apoptosis in A549 and H460 cells, whereas inhibition of miR-497-5p had an opposite effect. The ability of cell migration and invasion was inhibited by miR-497-5p overexpression but was increased by miR-497-5p inhibition. Moreover, our findings indicated that SOX5 was a direct target of miR-497-5p. The protein and mRNA expression levels of SOX5 in A549 cells were remarkably inhibited by miR-497-5p overexpression but was upregulated by miR-497-5p inhibition. Furthermore, SOX5 overexpression notably reversed the effect of miR-497-5p mimic on NSCLC cell proliferation, cell apoptosis, cell migration, and invasion. Taken together, these results indicated that miR-497-5p overexpression inhibited NSCLC cell proliferation, migration and invasion, and induced cell apoptosis through inhibiting SOX5 gene expression. It was conceivable that miR-497-5p might serve as a potential molecular target for NSCLC treatment.  相似文献   

9.
Lung adenocarcinoma is a common histologic type of lung cancer with a high death rate globally. Increasing evidence shows that long non‐coding RNA H19 (lncRNA H19) and CDH1 methylation are involved in multiple tumours. Here, we tried to investigate whether lncRNA H19 or CDH1 methylation could affect the development of lung adenocarcinoma. First, lung adenocarcinoma tissues were collected to detect CDH1 methylation. Then, the regulatory mechanisms of lncRNA H19 were detected mainly in concert with the treatment of overexpression of lncRNA H19, siRNA against lncRNA H19, overexpression of CDH1 and demethylating agent A‐5az in lung adenocarcinoma A549 cell. The expression of lncRNA H19 and epithelial‐mesenchymal transition (EMT)‐related factors as well as cell proliferation, sphere‐forming ability, apoptosis, migration and invasion were detected. Finally, we observed xenograft tumour in nude mice so as to ascertain tumorigenicity of lung adenocarcinoma cells. LncRNA H19 and methylation of CDH1 were highly expressed in lung adenocarcinoma tissues. A549 cells with silencing of lncRNA H19, overexpression of CDH1 or reduced CDH1 methylation by demethylating agent 5‐Az had suppressed cell proliferation, sphere‐forming ability, apoptosis, migration and invasion, in addition to inhibited EMT process. Silencing lncRNA H19 could reduce methylation level of CDH1. In vivo, A549 cells with silencing lncRNA H19, overexpression of CDH1 or reduced CDH1 methylation exhibited low tumorigenicity, reflected by the smaller tumour size and lighter tumour weight. Taken together, this study demonstrates that silencing of lncRNA H19 inhibits EMT and proliferation while promoting apoptosis of lung adenocarcinoma cells by inhibiting methylation of CDH1 promoter.  相似文献   

10.
Lung adenocarcinoma is the most prevalent type of lung cancer with a high incidence and mortality worldwide. Metastasis is the major cause of high death rate in lung cancer and the potential mechanism of lung adenocarcinoma metastasis remains indistinct. Emerging investigations have demonstrated that long noncoding RNA is a kind of non–protein coding RNA and plays a critical role in cancer progression and metastasis. TTN antisense RNA 1 (TTN-AS1) has been reported to promote cell growth and metastasis in cancer. However, the function of TTN-AS1 in lung adenocarcinoma is still to be illustrated. In this study, we observed that TTN-AS1 was upregulated in tissues and cells of lung adenocarcinoma and associated with poor overall survival. TTN-AS1 promoted cell proliferation, migration, invasion, and epithelial-mesenchymal transition in lung cancer. TTN-AS1 directly bound with miR-4677-3p and negatively regulated miR-4677-3p. MiR-4677-3p rescued the inhibitive impacts of TTN-AS1 knockdown on lung adenocarcinoma. Furthermore, zinc finger E-box binding homeobox 1 (ZEB1) was the target of miR-4677-3p, and TTN-AS1 modulated ZEB1 by competing for miR-4677-3p. TTN-AS1 drove the invasion and migration of lung adenocarcinoma cells by targeting the miR-4677-3p/ZEB1 axis. To sum up, our study offers insights into the mechanism of TTN-AS1 in lung adenocarcinoma metastasis and targeting the TTN-AS1/miR-4677-3p/ZEB1 axis may be the potential innovate therapeutic strategy for the patients with lung adenocarcinoma.  相似文献   

11.
It has been reported that chemokine CX3CL1 can regulate various tumours by binding to its unique receptor CX3CR1. However, the effect of CX3CL1-CX3CR1 on the lung adenocarcinoma and lung squamous cell carcinoma is still unclear. Here, we showed that CX3CL1 can further invasion and migration of lung adenocarcinoma A549 and lung squamous cell carcinoma H520. In addition, Western blot and immunofluorescence test indicated CX3CL1 up-regulated the phosphorylation level of cortactin, which is a marker of cell pseudopodium. Meanwhile, the phosphorylation levels of c-Src and c-Abl, which are closely related to the regulation of cortactin phosphorylation, are elevated. Nevertheless, the src/abl inhibitor bosutinib and mutations of cortactin phosphorylation site could inhibit the promotion effect of CX3CL1 on invasion and migration of A549 and H520. Moreover, these results of MTT, Hoechst staining and Western blot suggested that CX3CL1 had no effect on the proliferation and apoptosis of A549 and H520 in vitro. The effects of CX3CL1 were also verified by the subcutaneous tumour formation in nude mice, which showed that it could promote proliferation and invasion of A549 in vivo. In summary, our results indicated that CX3CL1 furthered invasion and migration in lung cancer cells partly via activating cortactin, and CX3CL1 may be a potential molecule in regulating the migration and invasion of lung cancer.  相似文献   

12.
MicroRNAs are a class of small non-coding RNAs regulating gene expression. In this study, we demonstrated that retinoic acid (RA) treatment increases the expression of miR-512-3p. Overexpression of miR-512-3p inhibited cell adhesion, migration, and invasion in non-small cell lung cancer (NSCLC) cell lines A549 and H1299. miR-512-3p inhibitor partially reversed these effects in H1299 cells stably expressing miR-512. We identified DOCK3, a RAC1-GEF (guanine nucleotide exchange factor), as a target gene of miR-512-3p. Overexpression of miR-512-3p led to the decrease of DOCK3 protein but not its mRNA. Knockdown of DOCK3 resulted in similar effects on adhesion, migration, and invasion as observed of miR-512-3p overexpression. Active RAC1 pull-down assay indicated that overexpression of miR-512-3p could decrease the activity of RAC1 with a higher efficiency than that of DOCK3 knockdown. Furthermore, expression of miR-512-3p was suppressed in most NSCLC patient tumor samples compared to its paired normal controls, suggesting that miR-512-3p might play a crucial role in lung cancer development. In conclusion, our results supported that miR-512-3p could inhibit tumor cell adhesion, migration, and invasion by regulating the RAC1 activity via DOCK3 in NSCLC A549 and H1299 cell lines.  相似文献   

13.
Lung cancer belongs to a leading popular and malignant cancer around the world. However, the root mechanism underlying lung cancer progression remains unclear. Recently, long noncoding RNA (lncRNA) has been identified as important for tumorigenesis. LncRNA MNX1-AS1 is proven to regulate colon adenocarcinoma, cervical cancer, glioblastoma, and ovarian cancer. Whether MNX1-AS1 participates in lung cancer needs investigation. In our research, we found that MNX1-AS1 was dramatically upregulated in lung cancer. MNX1-AS1 upregulation indicated poor prognosis in lung cancer patients. Functionally, MNX1-AS1 promoted lung cancer progression through regulating proliferation, migration, and invasion. Mechanistically, MNX1-AS1 was found to locate in the cytoplasm and interact with miR-527. Through inhibiting miR-527 availability, MNX1-AS1 facilitated BRF2 expression. Restoration of BRF2 rescued defects of proliferation, migration, and invasion caused by MNX1-AS1 knockdown. Taken together, our study found a novel signaling pathway, namely MNX1-AS1/miR-527/BRF2 axis, involved in lung cancer progression.  相似文献   

14.
Therapies for lung adenocarcinoma (LUAD) are mainly limited by drug resistance, metastasis or recurrence related to cancer stem cells (CSCs) with high proliferation and self-renewing. This research validated that miR-31 was over-expressed in LUAD by the analysis of generous clinical samples data. And the results of clinical data analysis showed that high expression of miR-31 was more common in patients with worse prognosis. The genes differentially expressed in LUAD tissues compared with normal tissues and A549CD133+ cells (LUAD CSCs) compared with A549 cells were separately screened from Gene Expression Profiling Interactive Analysis and GEO datasets. The target genes that may play a role in the regulation of lung adenocarcinoma was screened by comparison between the differential genes and the target genes of miR-31. The functional enrichment analysis of GO Biological Processes showed that the expression of target genes related to cell proliferation was increased, while the expression of target genes related to cell invasion and metastasis was decreased in LUAD tissues and A549CD133+ cells. The results suggested that miR-31 may have a significant inhibitory effect on the differentiation, invasion, metastasis and adhesion of LUAD CSCs, which was verified in vivo and in vitro experiments. Knock down of miR-31 accelerated xenograft tumor growth and liver metastasis in vivo. Likewise, the carcinogenicity, invasion and metastasis of A549CD133+ CSCs were promoted after miR-31 knockdown. The study validated that miR-31 was up regulated in LUAD and its expression may affect the survival time of patients with lung adenocarcinoma, which indicated that miR-31 may have potential value for diagnosis and prognosis of LUAD. However, the inhibitory effect of miR-31 on tumorigenesis, invasion and metastasis of lung adenocarcinoma CSCs suggested its complexity in the regulation of lung adenocarcinoma, which may be related to its extensive regulation of various target genes.  相似文献   

15.
CircRNAs are reported to be implicated in the development of lung cancer. This study focused on assessing the expression, functions and molecular mechanism of circPUM1 in lung adenocarcinoma. Here, it showed that circPUM1 is significantly upregulated in both lung adenocarcinoma cell lines and tissues. Furthermore, silencing of circPUM1 impaired the proliferation, migration and invasion ability, and increased apoptosis in A549?cells. Nevertheless, overexpression of circPUM1 in SPC-A1 cells has the opposite effect. Silencing of circPUM1 inhibits the tumorigenesis in nude mice. Mechanistically, circPUM1 could sponge miR-326 and promote the expression of its downstream proteins Cyclin D1 and Bcl-2. In summary, this present study revealed that circPUM1 functions as an oncogene to promote the tumorigenesis of lung adenocarcinoma through circPUM1/miR-326/Cyclin D1 and Bcl-2 axis. This indicates that circPUM1 may act as a potential therapeutic target for lung adenocarcinoma.  相似文献   

16.
目的:探讨长链非编码RNA(lncRNA)UNC5B-AS1调控miR-218-5p的表达影响肺癌细胞黏附、侵袭和迁移及其作用机制。方法:选取2017年6月至2019年6月在重庆三峡中心医院肿瘤科经手术切除的20例肺癌患者癌组织和对应癌旁组织标本,采用实时荧光定量PCR(qRT-PCR)检测肺癌组织和癌旁组织及其支气管上皮细胞HBE和不同肺癌细胞A549、H1437、H1975、H1299和H460中UNC5B-AS1的表达。将UNC5B-AS1 siRNA转染至肺癌A549细胞,采用黏附实验、Transwell侵袭实验及划痕实验检测下调UNC5B-AS1对A549细胞黏附、侵袭和迁移能力的影响;qRT-PCR和双荧光素酶报告基因检测实验鉴定UNC5B-AS1对miR-218-5p的靶向调控关系;Western blot检测上皮间质转化(EMT)相关蛋白表达情况。结果:肺癌组织和细胞中UNC5B-AS1表达显著高于癌旁组织和支气管上皮细胞(P<0.05),UNC5B-AS1在肺癌A549细胞中的表达量最高(P<0.05)。下调UNC5B-AS1的表达能够抑制A549细胞黏附、侵袭和迁移能力(P<0.05)。qRT-PCR和双荧光素酶报告基因检测结果表明UNC5B-AS1能靶向调控miR-218-5p的表达。下调UNC5B-AS1可抑制E-cadherin蛋白表达,促进Vimentin和Twist蛋白表达。结论:lncRNA UNC5B-AS1通过靶向调控miR-218-5p的表达促进肺癌细胞黏附、侵袭和迁移,其作用机制可能与促进EMT的发生有关。  相似文献   

17.
Human lung cancer is the leading cause of cancer motility worldwide, with nearly 1.4 million deaths each year, among which non-small cell lung cancer (NSCLC) accounts for almost 85 % of this disease. The discovery of microRNAs (miRNAs) provides a new avenue for NSCLC diagnostic and treatment regiments. Currently, a large number of miRNAs have been reported to be associated with the progression of NSCLC, among which serum miR-137 has been examined to be down-regulated in NSCLC patients. However, the function of miR-137 on NSCLC cells migration and invasion and the relative mechanisms were less known. Here, we found that ectopic expression of miR-137 could inhibit cell proliferation, induce cell apoptosis, and suppress cell migration and invasion in NSCLC cell line A549. Moreover, we found that paxillin (PXN) was a target gene of miR-137 in NSCLC cells and restored expression of PXN abolished the miR-137-mediated suppression of cell migration and invasion. Taken together, our results showed that miR-137 acted as a tumor suppressor in NSCLC by targeting PXN, and it may provide novel diagnostic and therapeutic options for human NSCLC clinical operation in future.  相似文献   

18.
ObjectiveCancer-associated fibroblasts (CAFs) function as a crucial factor in tumor progression by carrying exosomes to neighboring cells. This study was assigned to expound the underlying mechanism of CAFs-derived exosomal miR-210 in non-small cell lung cancer (NSCLC) progression.MethodCAFs and normal fibroblasts (NFs) were isolated and identified. Exosomes secreted from CAFs and NFs were isolated to analyze their effects on tumor volume and epithelial-mesenchymal transition (EMT). Exosomal miR-210 expression level was measured. The effects of exosomal miR-210 and UPF1 on cell viability, EMT, PTEN/PI3K/AKT signal pathway were determined. Dual-luciferase reporter gene assay was utilized to validate the binding of UPF1 to miR-210.ResultsCAFs-derived exosomes (CAFs-exo) were successfully extracted and proven to be uptake by lung cancer cells. Up-regulated expression level of miR-210 was found in CAFs-exo, which was then proved to enhance cell migration, proliferation, invasion abilities and EMT in NSCLC cells. Overexpression of miR-210 can also inhibit UPF1 and PTEN, but activate the PTEN/PI3K/AKT pathway. UPF1 was a target gene of miR-210. MiR-210 can up-regulate UPF1 expression level to activate PTEN/PI3K/AKT pathway.ConclusionMiR-210 secreted by CAFs-exo could promote EMT by targeting UPF1 and activating PTEN/PI3K/AKT pathway, thereby promoting NSCLC migration and invasion.  相似文献   

19.
Epithelial-mesenchymal transformation (EMT) is associated with drug resistance in human lung adenocarcinoma cells, but its specific mechanism has not been clarified. In this study, we investigated the effect of miRNA-146b on EMT in cisplatin (DDP) resistant human lung adenocarcinoma cells and the corresponding mechanism. Cisplatin resistant (CR) human lung adenocarcinoma cells (A549/DDP and H1299/DDP) were established, and the EMT characteristics and invasion and metastasis ability of CR cells were determined by tumor cell-related biological behavior experiments. The role of miR-146b in EMT of CR cells was determined by in vitro functional test. The targeted binding of miR-146b to protein tyrosine phosphatase 1B (PTP1B) was verified by biological information and double luciferin gene reporting experiments. The effect of miR-146b on tumor growth and EMT phenotype in vivo was investigated by establishing the xenotransplantation mouse model. Compared with the control group, H1299/DDP and A549/DDP cells showed the enhanced EMT phenotypes, invasion and migration ability. Besides, miR-146b was lowly expressed in H1299/DDP and A549/DDP cells. More importantly, overexpressed miR-146b could specifically bind to PTP1B, thus inhibiting the EMT process and ultimately reducing CR in H1299/DDP and A549/DDP cells. Finally, overexpressed miR-146b observably inhibited tumor growth in xenograft model mice and inhibited the EMT phenotype of A549/DDP cells in vivo by regulating the expressions of EMT-related proteins. Overexpressed miR-146b could reverse the EMT phenotype of CR lung adenocarcinoma cells by targeting PTP1B, providing new therapeutic directions for CR of lung adenocarcinoma cells.  相似文献   

20.
Long noncoding RNAs have been reported to be essential regulators in several human diseases, including tumorigenesis. A recent report revealed that FLVCR1-AS1 promotes the progression of hepatocellular carcinoma. However, whether FLVCR1-AS1 is involved in lung cancer remains unclear. In this study, we found that the expression of FLVCR1-AS1 was increased in lung cancer tissues according to The Cancer Genome Atlas database. Similarly, FLVCR1-AS1 was significantly upregulated in lung cancer cell lines. Knockdown of FLVCR1-AS1 dramatically reduced the cell proliferation, migration, and invasion of SPCA1 and A549. Mechanistically, we found that the expression levels of CTNNB1, SOX4, CCND1, CCND2, c-MYC, as well as nucleus β-catenin were decreased in lung cancer cells after FLVCR1-AS1 silencing. Thus, FLVCR1-AS1 positively regulates the activation of the Wnt/β-catenin pathway. Overexpression of CTNNB1 reversed the effect of FLVCR1-AS1 knockdown on A549 cells. In sum, FLVCR1-AS1 silencing inhibited the proliferation, migration, and invasion of lung cancer cells by inhibiting the activity of the Wnt/β-catenin signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号