首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We developed a common feature pharmacophore model using known antiadipogenic compounds (CFPMA). We identified rohitukine, a reported chromone anticancer alkaloid as a potential hit through in silico mapping of the in-house natural product library on CFPMA. Studies were designed to assess the antiadipogenic potential of rohitukine. Rohitukine was isolated from Dysoxylum binacteriferum Hook. to ⬧95% purity. As predicted by CFPMA, rohitukine was indeed found to be an antiadipogenic molecule. Rohitukine inhibited lipid accumulation and adipogenic differentiation in a concentration- and exposure-time-dependent manner in 3T3-L1 and C3H10T1/2 cells. Rohitukine downregulated expression of PPARγ, CCAAT/enhancer binding protein α, adipocyte protein 2 (aP2), FAS, and glucose transporter 4. It also suppressed mRNA expression of LPL, sterol-regulatory element binding protein (SREBP) 1c, FAS, and aP2, the downstream targets of PPARγ. Rohitukine arrests cells in S phase during mitotic clonal expansion. Rohitukine was bioavailable, and 25.7% of orally administered compound reached systemic circulation. We evaluated the effect of rohitukine on dyslipidemia induced by high-fat diet in the hamster model. Rohitukine increased hepatic expression of liver X receptor α and decreased expression of SREBP-2 and associated targets. Rohitukine decreased hepatic and gonadal lipid accumulation and ameliorated dyslipidemia significantly. In summary, our strategy to identify a novel antiadipogenic molecule using CFPMA successfully resulted in identification of rohitukine, which confirmed antiadipogenic activity and also exhibited in vivo antidyslipidemic activity.  相似文献   

4.
Betula platyphylla var. japonica (Betulaceae) has been used traditionally in Asian countries for the treatment of inflammatory diseases. A recent study has reported a phenolic compound, platyphylloside from B. platyphylla, that shows inhibition on adipocyte differentiation and induces lipolysis in 3T3-L1 cells. Based on this finding, we conducted phytochemical analysis of the EtOH extract of the bark of B. platyphylla var. japonica, which resulted in the isolation of phenolic glycosides (14). Treatment of the isolated compounds (14) during adipocyte differentiation of 3T3-L1 mouse adipocytes resulted in dose-dependent inhibition of adipogenesis. In mature adipocytes, arylbutanoid glycosides (24) induced lipolysis related genes HSL and ATGL, whereas catechin glycoside (1) had no effect. Additionally, arylbutanoid glycosides (24) also induced GLUT4 and adiponectin mRNA expression, indicating improvement in insulin signaling. This suggests that the isolates from B. platyphylla var. japonica exert benefial effects in regulation of adipocyte differentiation as well as adipocyte metabolism.  相似文献   

5.
Adipocyte growth and development are complex and precisely orchestrated processes. Several microRNAs have been identified as critical regulators of the adipocyte growth and development. Recently, bta-miR-204 was found to be involved in adipogenesis; however, the underlying molecular mechanism involved in bta-miR-204-mediated regulation of proliferation, differentiation, and apoptosis of adipocytes is not fully understood or elucidated. In this study, quantitative real-time polymerase chain reaction (qRT-PCR), Cell Counting Kit-8, EdU, flow cytometer, Oil Red O staining, and the western blot assays were used to assess the role of bta-miR-204 in adipocyte growth and development. Overexpression of bta-miR-204 had no significant effect on 3T3-L1 cell proliferation. The forced expression of bta-miR-204 promoted 3T3-L1 cell differentiation. Meanwhile, overexpression of bta-miR-204 upregulated the expression of Bax and downregulated the expression of Bcl-2 both at messenger RNA and protein levels, which suggested that bta-miR-204 can promote 3T3-L1 cell apoptosis. Using bioinformatic analysis, dual-luciferase reporter system and qRT-PCR, TGFBR2, and ELOVL6 were identified as the direct target genes of bta-miR-204. Therefore, our study provides a novel insight into the role of bta-miR-204 in the regulation of adipocyte growth and development, which may provide a novel therapeutic alternative against obesity.  相似文献   

6.
We evaluated in vitro anti-diabetic activities of 497 native plants of Jeju Island (South Korea) by measuring the induction of adipocyte differentiation. Among the plants, Daphniphyllum macropodum fruit extract (DME) had the highest peroxisome proliferator-activated receptor γ (PPARγ) agonist activity and was therefore selected as a potential source of anti-diabetic agents. To elucidate the active components of DME, constituent compounds were purified and their effects on the adipocyte differentiation were studied. Using activity-guided fractionation, four compounds were isolated from DME and their adipogenic effects were evaluated. Among the compounds isolated, 5,7-dihydroxychromone potently induced the differentiation of mouse 3T3-L1 preadipocytes. DME and 5,7-dihydroxychromone increased PPARγ and liver X receptor α (LXRα) mRNA expression levels. To determine whether the adipogenic effects we observed might affect serum glucose levels, we undertook in vivo experiment using streptozotocin-/high-fat diet-induced type 2 diabetes mouse model. DME supplementation reduced serum glucose, total cholesterol, and triacylglycerol levels in diabetes mice. These results suggest that DME may be useful for the prevention and treatment of type 2 diabetes mellitus. Moreover, it was proposed that 5,7-dihydroxychromone isolated from DME is one of the active compounds that may contribute to regulate blood glucose levels.  相似文献   

7.
8.
9.
Selenium (Se) has been utilized in the differentiation of primary pig and rat preadipocytes, indicating that it may have proadipogenic potential; however, some studies have also demonstrated that Se has antiadipogenic activity. In this study, chicken embryonic fibroblasts (CEFs) were used to investigate the role of Se in adipogenesis in vitro and in ovo. Se supplementation increased lipid droplet accumulation and inhibited proliferation of cultured CEFs isolated from 6-day-old embryos dose-dependently. This suggests that Se may play a role in cell cycle inhibition, thereby promoting the differentiation of fibroblasts to adipocytes. Se did not stimulate adipogenic differentiation of CEFs isolated from 9- to 12-day-old embryos, implying a permissive stage of adipogenic determination by Se at earlier embryonic ages. Microarray analysis comparing control and Se treatments on CEFs from 6-day-old embryos and confirmatory analysis by quantitative real-time polymerase chain reaction revealed that genes involved in adipocyte determination and differentiation, fatty acid uptake and triacylglycerol synthesis were up-regulated. In addition, up-regulation of an anti-lipolytic G0/G1 switch gene 2 and down-regulation of a prolipolytic monoglyceride lipase may lead to inhibition of lipolysis by Se. Both osteogenic and myogenic genes were down-regulated, and several genes related to oxidative stress response during adipogenesis were up-regulated. In ovo injection of Se at embryonic day 8 increased adipose tissue mass by 30% and caused adipocyte hypertrophy in 17-day-old chicken embryos, further supporting the proadipogenic role of Se during the embryonic development of chickens. These results suggest that Se plays a significant role in several mechanisms related to adipogenesis.  相似文献   

10.
Peroxisome proliferator-activated receptor-α (PPARα) is a dietary lipid sensor, whose activation results in hypolipidemic effects. In this study, we investigated whether PPARα activation affects energy metabolism in white adipose tissue (WAT). Activation of PPARα by its agonist (bezafibrate) markedly reduced adiposity in KK mice fed a high-fat diet. In 3T3-L1 adipocytes, addition of GW7647, a highly specific PPARα agonist, during adipocyte differentiation enhanced glycerol-3-phosphate dehydrogenase activity, insulin-stimulated glucose uptake, and adipogenic gene expression. However, triglyceride accumulation was not increased by PPARα activation. PPARα activation induced expression of target genes involved in FA oxidation and stimulated FA oxidation. In WAT of KK mice treated with bezafibrate, both adipogenic and FA oxidation-related genes were significantly upregulated. These changes in mRNA expression were not observed in PPARα-deficient mice. Bezafibrate treatment enhanced FA oxidation in isolated adipocytes, suppressing adipocyte hypertrophy. Chromatin immunoprecipitation (ChIP) assay revealed that PPARα was recruited to promoter regions of both adipogenic and FA oxidation-related genes in the presence of GW7647 in 3T3-L1 adipocytes. These findings indicate that the activation of PPARα affects energy metabolism in adipocytes, and PPARα activation in WAT may contribute to the clinical effects of fibrate drugs.  相似文献   

11.
Previous studies in Graves’ orbitopathy (GO) patient-derived fibroblasts showed that inhibition of autophagy suppresses adipogenic differentiation. Autophagy activation is associated with inflammation, production of reactive oxygen species and fibrosis. Neferine is an alkaloid extracted from Nelumbo nucifera, which induces Nrf2 expression and inhibits autophagy. Here, we have elucidated the role of neferine on interleukin (IL)-13-induced autophagy using patient-derived orbital fibroblasts as an in vitro model of GO. GO patient-derived orbital fibroblasts were isolated and cultured to generate an in vitro model of GO. Autophagy was determined by Western blot detection of the markers such as Beclin-1, Atg-5 and LC3 and by immunofluorescence detection of autophagosome formation. Analysis of differentiation towards an adipogenic lineage was performed by Oil red O staining. The expression of inflammatory factors was detected by ELISA and semiquantitative RT-PCR. Neferine inhibited autophagy in GO orbital fibroblasts, as indicated by the suppression of IL-13-induced autophagosome formation, overexpression of autophagy markers, increased LC3-II/LC3-I levels and finally down-regulation of p62. Neferine suppressed IL-13-induced inflammation, ROS generation, fibrosis and adipogenic differentiation in GO patient-derived orbital fibroblasts. The anti-inflammatory, antioxidant and antiadipogenic effects of neferine were accompanied by the up-regulation of Nrf2. These results indicated that orbital tissue remodelling and inflammation in GO may be mediated by autophagy, and neferine suppressed autophagy-related inflammation and adipogenesis through a mechanism involving Nrf2.  相似文献   

12.
miRNAs, a kind of noncoding small RNA, play a significant role in adipose differentiation. In this study, we explored the effect of miR-324-5p in adipose differentiation, and found that miR-324-5p could promote adipocytes differentiation and increase body weight in mice. We overexpressed miR-324-5p during adipocytes differentiation, by oil red O and bodipy staining found that lipid accumulation was increased, and the expression level of adipogenic related genes were significantly increased. And the opposite experimental results were obtained after inhibiting miR-324-5p. In vivo, we injected miR-324-5p agomiR in obese mice and found that body weight, adipocyte area, and adipogenic-related gene expression level were significantly increased but lipolytic genes were decreased. To further explore the mechanism of miR-324-5p regulation in lipid accumulation, we constructed Krueppel-like factor 3 (KLF3) 3′-untranslated region luciferase reporter vector and KLF3 pcDNA 3.1 overexpression vector, and found that miR-324-5p was able to directly target KLF3. Overall, in this study we found that miR-324-5p could promote mice preadipoytes differentiation and increase mice fat accumulation by targeting KLF3.  相似文献   

13.
14.
Abstract Adipocytokines, bioactive molecules secreted from adipose tissues, play important roles in physiology, development, and disease. Recently, heparin-binding epidermal growth factor-like growth factor (HB-EGF) was identified as an adipocytokine whose expression correlates with obesity. However, the biological role of fat-secreted HB-EGF is still unclear. In this study, we investigated the effects of HB-EGF on the adipocyte differentiation of C3H10T1/2 pluripotent mesenchymal cells. Upon adipogenic conversion of C3H10T1/2 cells, HB-EGF displayed dynamic changes in expression where an initial decrease was followed by increased levels of expression at later stages. HB-EGF treatment during adipogenic induction inhibited lipid accumulation and decreased the expression of adipocyte molecular markers (fatty acid-binding protein, peroxisome proliferator-activated receptor γ, and CAAT enhancer-binding protein α) and lipogenic genes (glucose transporter, fatty acid synthetase, and lipoprotein lipase). Therefore, HB-EGF has an inhibitory effect on adipocyte differentiation. Administration of HB-EGF at various intervals during adipocyte differentiation revealed that HB-EGF acts during the early stages of adipocyte differentiation, but not at the later stages of differentiation. Furthermore, HB-EGF was able to block the commitment of pluripotent mesenchymal cells to the adipocyte lineage triggered by bone morphogenic protein 4 treatment. These data suggest that HB-EGF acts as a negative regulator of adipogenesis by inhibiting the commitment and early differentiation of the adipose lineage. The inhibitory role of HB-EGF on adipocyte differentiation of pluripotent mesenchymal cells sheds light on potential mechanisms that control adipose tissue homeostasis.  相似文献   

15.
16.
Adipogenesis is a complex cellular process, which needs a series of molecular events, including long non‐coding RNA (lncRNA). In the present study, a novel lncRNA named BADLNCR1 was identified as a regulator during bovine adipocyte differentiation, which plays an inhibitory role in lipid droplet formation and adipogenic marker gene expression. CHIPR‐seq data demonstrated a potential competitive binding motif between BADLNCR1 and sterol regulatory element‐binding proteins 1 and 2 (SREBP1/2). Dual‐luciferase reporter assay indicated target relationship between KLF2 and BADLNCR1. Moreover, after the induction of KLF2, the expression of adipogenic gene reduced, while the expression of BADLNCR1 increased. Real‐time quantitative PCR (qPCR) showed that BADLNCR1 negatively regulated mRNA expression of GLRX5 gene, a stimulator of genes that promoted formation of lipid droplets and expression of adipogenic genes. GLRX5 could partially reverse the effect of BADLNCR1 in bovine adipocyte differentiation. Dual‐luciferase reporter assay stated that BADLNCR1 significantly reduced the enhancement of C/EBPα on promoter activity of GLRX5 gene. Furthermore, CHIP‐PCR and CHIRP‐PCR confirmed the suppressing effect of BADLNCR1 on binding of C/EBPα to GLRX5 promoter. Collectively, this study revealed the molecular mechanisms underlying the negative regulation of BADLNCR1 in bovine adipogenic differentiation.  相似文献   

17.
18.
19.
20.
We investigated the role of the major isoforms of CCAAT enhancer binding protein β (C/EBPβ), C/EBPβ-LAP and C/EBPβ-LIP, in adipogenesis of human white adipose-derived stromal/progenitor cells (ASC). C/EBPβ gene expression was transiently induced early in adipogenesis. At later stages, in immature adipocytes, the C/EBPβ mRNA and protein levels declined. The C/EBPβ-LIP protein steady-state level decreased considerably stronger than the C/EBPβ-LAP level and the C/EBPβ-LIP half-life was significantly shorter than the C/EBPβ-LAP half-life. The turn-over of both C/EBPβ-isoforms was regulated by ubiquitin/proteasome-dependent degradation. These data suggest that the protein stability of the C/EBPβ-isoforms is differentially regulated in the course of adipogenesis and in immature adipocytes. Constitutive overexpression of C/EBPβ-LIP had antiadipogenic activity in human ASC. C/EBPβ-LAP, which promotes adipogenesis in mouse 3T3-L1 preadipocytes by directly activating expression of the adipogenic keyregulator PPARγ2, induced the expression of PPARγ2 and of the adipocyte differentiation gene product FABP4 in confluent ASC in the absence of adipogenic hormones. At later stages after hormone cocktail-induced adipogenesis, in immature adipocytes, constitutive overexpression of C/EBPβ-LAP led to reduced expression of PPARγ2 and FABP4, C/EBPα expression was downregulated and the expression of the adipocyte differentiation gene products adiponectin and leptin was impaired. These findings suggest that constitutive overexpression of C/EBPβ-LAP induces adipogenesis in human ASC and negatively regulates the expression of adipogenic regulators and certain adipocyte differentiation gene products in immature adipocytes. We conclude the regulation of both C/EBPβ gene expression and C/EBPβ-LIP and C/EBPβ-LAP protein turn-over plays an important role for the expression of adipogenic regulators and/or adipocyte differentiation genes in early adipogenic differentiation of human ASC and at later stages in human immature adipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号