首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background/aim: MiR-125b plays an important role in breast cancer. The current study was to explore the expression and function of miR-125b in triple negative breast cancer cells. Materials and methods: The expression of miR-125b in human TNBC samples and cell lines were examined by qRT-PCR. MTT, scratch assays and transwell assays were utilized to observe the proliferation, migration and invasion ability. MiR-125b’s target gene and downstream signaling pathways were investigated by Luciferase Reporter Assays, qRT-PCR, immunofluorescence assays and western bolt. Results: MiR-125b was highly expressed in human TNBC tissues and cell lines. Inhibiting miR-125b expression suppressed the proliferation, cell migration and invasion. The three-prime untranslated region (3´-UTR) of adenomatous polyposis coli (APC) mRNA contains miR-125b binding sites, and inhibiting miR-125b expression suppressed the activity of the intracellular Wnt/β-catenin pathways and EMT. Conclusion: Inhibiting miR-125b regulates the Wnt/β-catenin pathway and EMT to suppress the proliferation and migration of MDA-MB-468 TNBC cells.  相似文献   

2.
The present study investigated the potential interaction between miR-526b and lncRNA SLC16A1-AS1 in triple-negative breast cancer (TNBC). Expression of miR-526b and SLC16A1-AS1 in TNBC tumor tissues and paired nontumor tissues from 60 TNBC patients was detected by real-time polymerase chain reaction (RT-qPCR). The interaction between miR-526b and SLC16A1-AS1 was evaluated with overexpression experiments, followed by RT-qPCR. The proliferation and migration of cells were detected with cell counting kit-8 assay and Transwell assay, respectively. Apoptosis of cells was assessed by cell apoptosis assay. The expression of apoptosis-related proteins was quantified by Western blot analysis. MiR-526b was predicted to bind with SLC16A1-AS1. Overexpression of miR-526b in TNBC cells decreased the expression levels of SLC16A1-AS1, while overexpression of SLC16A1-AS1 did not affect the expression of miR-526b. In TNBC tissues, miR-526b was downregulated in TNBC tissues, while SLC16A1-AS1 was upregulated in TNBC tissues compared to that in nontumor tissues. The expression of SLC16A1-AS1 and miR-526b were inversely correlated. In vitro experiments showed that overexpression of SLC16A1-AS1 promoted cell proliferation and invasion but suppressed cell apoptosis. MiR-526b played an opposite role and suppressed the function of SLC16A1-AS1. MiR-526b is downregulated in TNBC and it targets SLC16A1-AS1 to regulate proliferation, apoptosis, and invasion of TNBC cells.  相似文献   

3.
4.
There is a continued need for investigating the roles of microRNAs (miRNAs) and their targets on the progression of gastric cancer (GC), especially metastasis. Here, we performed an integrated study to identify dysregulated miRNAs critical for GC development and progression. miR-135b was determined as a promising biomarker for GC. The expression level of miR-135b was increased among GC cell lines, patient tumor tissues, serum samples, and correlation with aggravation of the GC patients. The in vitro functional assays demonstrated overexpression of miR-135b promoted cell proliferation, migration and invasion in GC, while miR-135b inhibition led to the opposite results. CAMK2D was found to be the direct target of miR-135b, serving as a tumor suppressor in GC cells. Based on our and public datasets, we confirmed the attenuation of CAMK2D expression in GC tissues. And, the expression levels of miR-135b and CAMK2D were closely associated with prognosis of GC patients. Ectopic expression of miR-135b resulted in the down-regulation of CAMK2D. Additionally, CAMK2D was a prerequisite for miR-135b to promote GC cells proliferation and migration by regulating the EMT process, which was confirmed by the in vivo experiments. Importantly, in vivo injection of miR-135b antagomir significantly repressed the tumor growth and metastasis of xenograft models, which suggested that the miR-135b antagomir were promising for clinical applications. Taken together, these results indicate that miR-135b/CAMK2D axis drives GC progression by EMT process remodeling, suggesting that miR-135b may be utilized as a new therapeutic target and prognostic marker for GC patients.  相似文献   

5.
Recently, long noncoding RNAs (lncRNAs) have been reported as a new kind of controllers about cancer processes in biology. In spite of the dysregulation of lncRNAs in various kinds of cancers, only a little of the information was effective on the expression configuration and inner effects of lncRNAs in triple-negative breast cancer (TNBC). This study valued the expression of lncRNA SOX21-AS1 and the biological role it played in TNBC. In our research, SOX21-AS1 had a high expression in TNBC cell lines. The functional experiments showed that knockdown of SOX21-AS1 obviously restrained cell proliferation, migration, invasion, and epithelial-mesenchymal transition process and promoted cell apoptosis. Mechanistically, SOX21-AS1 was found to bind with miR-520a-5p. Besides, ORMDL3 was identified as a downstream target of miR-520a-5p, and the suppressed ORMDL3 expression induced by silenced SOX21-AS1 could be restored by miR-520a-5p inhibition. Further, data from rescue assays revealed that SOX21-AS1 could regulate the malignancy of TNBC via miR-520a-5p/ORMDL3 axis. All in all, we identified that SOX21-AS1 regulated the cellular process of TNBC cells via antagonizing miR-520a-5p availability to upregulate ORMDL3 expression.  相似文献   

6.
Osteosarcoma is the most common primary tumor of the bone. It leads to many deaths because of its rapid proliferation and metastasis. Recent studies have shown that microRNAs are important gene regulators that are involved in various cancer-related processes. In this study, we found that miR-135b was down-regulated in both osteoscarcoma patient tumor tissues and osteoscarcoma cell lines in comparison to paired adjacent non-tumor bone tissue. We observed that a lower level of miR-135b was associated with metastasis. The ectopic expression of miR-135b markedly suppressed osteoscarcoma cell proliferation, migration, and invasion. Conversely, the inhibition of miR-135b expression dramatically accelerated cell proliferation, migration, and invasion. The forced expression of miR-135b in osteosarcoma cells resulted in a significant reduction in the protein level of c-Myc and repressed the activity of a luciferase reporter that contained the 3′-untranslated region of the c-Myc mRNA. These effects were abolished by the mutation of the predicted miR-135b-binding site, which indicates that c-Myc may be a miR-135b target gene. Moreover, the ectopic expression of c-Myc partially reversed the inhibition of cell proliferation and invasion that was caused by miR-135b. These data therefore suggest that miR-135b may function as a tumor suppressor to regulate osteosarcoma cell proliferation and invasion through a mechanism that targets the c-Myc oncogene. These findings indicate that miR-135b may play a role in the pathogenesis of osteosarcoma.  相似文献   

7.
Our previous study has suggested suppressor of cytokine signaling 1 (SOCS1) is associated with clinical progression and functions as an oncogenic role to regulate cell proliferation and apoptosis in triple-negative breast cancer (TNBC). Several microRNA-messenger RNA (miRNA-mRNA) relationship databases show SOCS1 is identified as a direct target gene of miRNA-4458 (miR-4458). The purpose of this study was to study the relationship between miR-4458 and SOCS1 in TNBC. In our results, miR-4458 expression was decreased in TNBC tissues and cells compared with adjacent normal tissues and normal mammary epithelial cell line, respectively. Moreover, miR-4458 directly bound to SOCS1, and negatively regulated SOCS1 mRNA and protein expression. Furthermore, miR-4458 suppressed cell proliferation and promote cell apoptosis through regulating SOCS1 in TNBC. Besides, levels of miR-4458 expression in patients with advanced clinical stage were obviously lower than in patients with early clinical stage. In conclusion, miR-4458 mediates SOCS1 to play a tumor-suppressive role in TNBC.  相似文献   

8.
Recently, long noncoding RNAs (lncRNAs) have become the key gene regulators and prognostic biomarkers in various cancers. Through microarray data, Linc00339 was identified as a candidate oncogenic lncRNA. We compared the expression levels of Linc00339 in several breast cancer cell lines and normal mammary gland epithelial cell line. The effects of Linc00339 on tumor progression were examined both in vitro and in vivo. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays were applied to evaluate the functions of Linc00339, miR-377-3p, and HOXC6 on cell proliferation. Flow cytometry analysis was used to detect apoptosis and cell cycle distribution. Overall survival (OS) was analyzed using data from The Cancer Genome Atlas and molecular taxonomy of breast cancer international consortium (METABRIC). Dual luciferase assay and RNA immunoprecipitation were performed to confirm the interaction between Linc003339 and miR-377-3p. Linc00339 was increased in breast cancer cell lines compared with the normal epithelial cell. Through in vitro and in vivo experiments, Linc00339 overexpression promoted triple-negative breast cancer (TNBC) proliferation, inhibited cell cycle arrest, and suppressed apoptosis. Silencing of Linc00339 obtained the opposite effects. Mechanistic investigations demonstrated that Linc00339 could sponge miR-377-3p and regulate its expression. Higher expression of miR-377-3p indicated longer OS in breast cancer patients, especially in TNBC patients. Overexpression of miR-377-3p retarded TNBC cell growth through regulating cell cycle distribution and apoptosis. And miR-377-3p was involved in Linc00339-mediated TNBC proliferation through regulating HOXC6 expression. Knockdown of HOXC6 inhibited TNBC progression. In conclusion, our results illuminated that the novel Linc00339/miR-377-3p/HOXC6 axis played a critical role in TNBC progression and might be a promising therapeutic target for TNBC treatment.  相似文献   

9.
10.
Triple‐negative breast cancer (TNBC) is a highly aggressive tumour subtype associated with poor prognosis. The mechanisms involved in TNBC progression remains largely unknown. To date, there are no effective therapeutic targets for this tumour subtype. Paired‐related homeobox 1b (Prrx1b), one of major isoforms of Prrx1, has been identified as a new epithelial–mesenchymal transition (EMT) inducer. However, the function of Prrx1b in TNBC has not been elucidated. In this study, we found that Prrx1b was significantly up‐regulated in TNBC and associated with tumour size and vascular invasion of breast cancer. Silencing of Prrx1b suppressed the proliferation, migration and invasion of basal‐like cancer cells. Moreover, silencing of Prrx1b prevented Wnt/β‐catenin signaling pathway and induced the mesenchymal‐epithelial transition (MET). Taken together, our data indicated that Prrx1b may be an important regulator of EMT in TNBC cells and a new therapeutic target for interventions against TNBC invasion and metastasis.  相似文献   

11.
X Kong  G Li  Y Yuan  Y He  X Wu  W Zhang  Z Wu  T Chen  W Wu  PE Lobie  T Zhu 《PloS one》2012,7(8):e41523
Focal adhesion kinase (FAK) is an important mediator of extracellular matrix integrin signaling, cell motility, cell proliferation and cell survival. Increased FAK expression is observed in a variety of solid human tumors and increased FAK expression and activity frequently correlate with metastatic disease and poor prognosis. Herein we identify miR-7 as a direct regulator of FAK expression. miR-7 expression is decreased in malignant versus normal breast tissue and its expression correlates inversely with metastasis in human breast cancer patients. Forced expression of miR-7 produced increased E-CADHERIN and decreased FIBRONECTIN and VIMENTIN expression in breast cancer cells. The levels of miR-7 expression was positively correlated with E-CADHERIN mRNA and negatively correlated with VIMENTIN mRNA levels in breast cancer samples. Forced expression of miR-7 in aggressive breast cancer cell lines suppressed tumor cell monolayer proliferation, anchorage independent growth, three-dimensional growth in Matrigel, migration and invasion. Conversely, inhibition of miR-7 in the HBL-100 mammary epithelial cell line promoted cell proliferation and anchorage independent growth. Rescue of FAK expression reversed miR-7 suppression of migration and invasion. miR-7 also inhibited primary breast tumor development, local invasion and metastatic colonization of breast cancer xenografts. Thus, miR-7 expression is decreased in metastatic breast cancer, correlates with the level of epithelial differentiation of the tumor and inhibits metastatic progression.  相似文献   

12.
13.
14.
Aberrant microRNAs are widely identified in multiple cancers, including lung cancer. miR-135a-5p can function as a significant tumor regulator in diverse cancers via impacting multiple genes in oncogenic pathways. Nevertheless, the biological role of miR-135a-5p in lung cancer is poorly known. Here, we investigated its function in lung cancer. As exhibited, miR-135a-5p was elevated in lung cancer cells in contrast to BEAS-2B cells. Then, we inhibited miR-135a-5p expression by transfecting LV-anti-miR-135a-5p into lung cancer cells. As displayed, miR-135a-5p was obviously reduced in A549 and H1299 cells. Knockdown of miR-135a-5p repressed lung cancer cell growth and cell proliferation. Meanwhile, cell colony formation capacity was depressed, cell apoptosis was enhanced and cell cycle progression was blocked in G1 phase by inhibition of miR-135a-5p in vitro. Additionally, the migration and invasion of A549 and H1299 cells was strongly depressed by LV-anti-miR-135a-5p. For another, by using informatics analysis, lysyl oxidase-like 4 (LOXL4) was speculated as the downstream target of miR-135a-5p. We validated their direct correlation and moreover, overexpression of miR-135a-5p restrained LOXL4 levels in lung cancer cells. Subsequently, we proved that miR-135a-5p promoted lung cancer development via targeting LOXL4 by carrying out the in vivo assays. Taken these together, our study revealed miR-135a-5p might be indicated as a perspective for lung cancer via targeting LOXL4.  相似文献   

15.
16.
An increasing amount of evidence has proven the vital role of circular RNAs (circRNAs) in cancer progression. However, there remains a dearth of knowledge on the function of circRNAs in triple-negative breast cancer (TNBC). Utilizing a circRNA microarray dataset, four circRNAs were identified to be abnormally expressed in TNBC. Among them, circBACH2 was most significantly elevated in TNBC cancerous tissues and its high expression was positively correlated to the malignant progression of TNBC patients. In normal human mammary gland cell line, the overexpression of circBACH2 facilitated epithelial to mesenchymal transition and cell proliferation. In TNBC cell lines, circBACH2 knockdown suppressed the malignant progression of TNBC cells. Mechanistically, circBACH2 sponged miR-186-5p and miR-548c-3p, thus releasing the C-X-C chemokine receptor type 4 (CXCR4) expression. The interference of miR-186-5p/miR-548c-3p efficiently promoted the cell proliferation, migration, and invasion suppressed by circBACH2 knockdown in the TNBC cell lines. Finally, circBACH2 knockdown repressed the growth and lung metastasis of TNBC xenografts in nude mice. In summary, circBACH2 functions as an oncogenic circRNA in TNBC through a novel miR-186-5p/miR-548c-3p/CXCR4 axis.Subject terms: Cancer, Cell biology  相似文献   

17.
目的: 探讨miR-34a-5p在三阴性乳腺癌(triple negative breast cancer,TNBC)中的表达,分析miR-34a-5p对TNBC细胞增殖、凋亡、迁移的作用,对TNBC荷瘤小鼠肿瘤生长的影响以及在TNBC中对B7-H1表达的影响。方法: 利用RT-qPCR、Western blot分析TNBC细胞中miR-34a-5p、B7-H1的表达,并利用Kaplan-Meier分析二者的表达与TNBC患者的生存关系;将miR-34a-5p转染TNBC细胞,通过CCK-8、流式细胞术及划痕实验检测miR-34a-5p对TNBC细胞增殖、凋亡、迁移的影响;利用RT-qPCR、Western blot检测miR-34a-5p、B7-H1表达水平的变化,双荧光素酶基因报告验证miR-34a-5p与B7-H1的相互作用;利用RT-qPCR、Western blot、IHC检测miR-34a-5p对MDA-MB-231荷瘤小鼠miR-34a、B7-H1表达的影响。结果: TNBC细胞中miR-34a-5p呈低表达,B7-H1呈高表达,二者均与TNBC患者的不良预后有关,差距具有统计学意义(P<0.01);miR-34a-5p抑制TNBC细胞增殖、侵袭,促进细胞凋亡,并且在TNBC细胞中靶向抑制B7-H1;miR-34a-5p agomir在体内抑制MDA-MB-231成瘤裸鼠的肿瘤生长和B7-H1表达。结论: miR-34a-5p在TNBC发生、发展中发挥着重要作用,靶向miR-34a-5p/B7-H1可能成为TNBC患者新的分子治疗策略。  相似文献   

18.
19.
Triple-negative breast cancer, devoid of estrogen (ER), progesterone (PR), and human epidermal growth factor receptor 2 (HER-2) expression, is deprived of commonly used targeted therapies. MicroRNAs (miRNAs) are undergoing a revolution in terms of potentially diagnostic or therapeutic elements. Combining computational approaches, we enriched miRNA binding motifs of Wnt pathway-associated upregulated genes. Our in-depth bioinformatics, in vitro and in vivo analyses indicated that miR-381 targets main genes of the Wnt signaling pathway including CTNNB1, RhoA, ROCK1, and c-MYC genes. The expression level of miR-381 and target genes was assessed by quantitative real-time polymerase chain reaction (RT-qPCR) in MCF-7, MDA-MB-231, and MCF-10A as well as 20 breast cancer samples and normal tissues. Luciferase reporter assay was performed. Lentiviral particles containing miR-381 were used to evaluate the effect of miR-381 restoration on cell proliferation, migration, and invasion of the invasive triple-negative MDA-MB-231 cell line and also in a mouse model of breast cancer. The expression of miR-381 was lower than that of normal cells, especially in TNBC cell line and breast tissues. Luciferase assay results confirmed that miR-381 targets all the predicted 3′-untranslated regions (3′-UTRs). Upon miR-381 overexpression, the expression of target genes declined, and the migration and invasion potential of miR-381-receiving MDA-MB-231 cells decreased. In a mouse model of triple-negative breast cancer, miR-381 re-expression inhibited the invasion of cancer cells to lung and liver and prolonged the survival time of cancer cell-bearing mice. Therefore, miR-381 is a regulator of Wnt signaling and its re-expression provides a potentially effective strategy for inhibition of TNBC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号