首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Disruption of the endothelial cell (EC) barrier leads to pathology via edema and inflammation. During infections, pathogens are known to invade the EC barrier and modulate vascular permeability. However, ECs are semi-professional antigen-presenting cells, triggering T-cell costimulation and specific immune-cell activation. This in turn leads to the release of inflammatory mediators and the destruction of infected cells by effectors such as CD8(+) T-cells. During malaria, transfer of parasite antigens to the EC surface is now established. At the same time, CD8 activation seems to play a major role in cerebral malaria. We summarize here some of the pathways leading to antigen presentation by ECs and address the involvement of these mechanisms in the pathophysiology of cerebral malaria.  相似文献   

2.
Shear stress, a major hemodynamic force acting on the vessel wall, plays an important role in physiological processes such as cell growth, differentiation, remodelling, metabolism, morphology, and gene expression. We investigated the effect of shear stress on gene expression profiles in co-cultured vascular endothelial cells (ECs) and smooth muscle cells (SMCs). Human aortic ECs were cultured as a confluent monolayer on top of confluent human aortic SMCs, and the EC side of the co-culture was exposed to a laminar shear stress of 12 dyn/cm2 for 4 or 24 h. After shearing, the ECs and SMCs were separated and RNA was extracted from the cells. The RNA samples were labelled and hybridized with cDNA array slides that contained 8694 genes. Statistical analysis showed that shear stress caused the differential expression (p ≤ 0.05) of a total of 1151 genes in ECs and SMCs. In the co-cultured ECs, shear stress caused the up-regulation of 403 genes and down-regulation of 470. In the co-cultured SMCs, shear stress caused the up-regulation of 152 genes and down-regulation of 126 genes. These results provide new information on the gene expression profile and its potential functional consequences in co-cultured ECs and SMCs exposed to a physiological level of laminar shear stress. Although the effects of shear stress on gene expression in monocultured and co-cultured EC are generally similar, the response of some genes to shear stress is opposite between these two types of culture (e.g., ICAM-1 is up-regulated in monoculture and down-regulated in co-culture), which strongly indicates that EC–SMC interactions affect EC responses to shear stress.  相似文献   

3.
Mechanotransduction in endothelial cell migration   总被引:3,自引:0,他引:3  
The migration of endothelial cells (ECs) plays an important role in vascular remodeling and regeneration. EC migration can be regulated by different mechanisms such as chemotaxis, haptotaxis, and mechanotaxis. This review will focus on fluid shear stress-induced mechanotransduction during EC migration. EC migration and mechanotransduction can be modulated by cytoskeleton, cell surface receptors such as integrins and proteoglycans, the chemical and physical properties of extracellular matrix (ECM) and cell-cell adhesions. The shear stress applied on the luminal surface of ECs can be sensed by cell membrane and associated receptor and transmitted throughout the cell to cell-ECM adhesions and cell-cell adhesions. As a result, shear stress induces directional migration of ECs by promoting lamellipodial protrusion and the formation of focal adhesions (FAs) at the front in the flow direction and the disassembly of FAs at the rear. Persistent EC migration in the flow direction can be driven by polarized activation of signaling molecules and the positive feedback loops constituted by Rho GTPases, cytoskeleton, and FAs at the leading edge. Furthermore, shear stress-induced EC migration can overcome the haptotaxis of ECs. Given the hemodynamic environment of the vascular system, mechanotransduction during EC migration has a significant impact on vascular development, angiogenesis, and vascular wound healing.  相似文献   

4.
Arterial bifurcations are common sites for development of cerebral aneurysms. Although this localization of aneurysms suggests that high shear stress (SS) and high spatial SS gradient (SSG) occurring at the bifurcations may be crucial factors for endothelial dysfunction involved in aneurysm formation, the details of the relationship between the hemodynamic environment and endothelial cell (EC) responses remain unclear. In the present study, we sought morphological responses of ECs under high-SS and high-SSG conditions using a T-shaped flow chamber. Confluent ECs were exposed to SS of 2-10 Pa with SSG of up to 34 Pa/mm for 24 and 72 h. ECs exposed to SS without spatial gradient elongated and oriented to the direction of flow at 72 h through different processes depending on the magnitude of SS. In contrast, cells did not exhibit preferred orientation and elongation under the combination of SS and SSG. Unlike cells aligned to the flow by exposure to only SS, development of actin stress fibers was not observed in ECs exposed to SS with SSG. These results indicate that SSG suppresses morphological changes of ECs in response to flow.  相似文献   

5.
To explore the contribution of red blood cell (RBC) deformability and interaction with endothelial cells (ECs) to circulatory disorders, these RBC properties were modified by treatment with hydrogen peroxide (H(2)O(2)), and their effects on vascular resistance were monitored following their infusion into rat mesocecum vasculature. Treatment with 0.5 mM H(2)O(2) increased RBC/EC adherence without significant alteration of RBC deformability. At 5.0 mM H(2)O(2), RBC deformability was considerably reduced, inducing a threefold increase in the number of undeformable cells, whereas RBC/EC adherence was not further affected by the increased H(2)O(2) concentration. This enabled the selective manipulation of RBC adherence and deformability and the testing of their differential effect on vascular resistance. Perfusion of RBCs with enhanced adherence and unchanged deformability (treatment with 0.5 mM H(2)O(2)) increased vascular resistance by about 35% compared with untreated control RBCs. Perfusion of 5.0 mM H(2)O(2)-treated RBCs, with reduced deformability (without additional increase of adherence), further increased vascular resistance by about 60% compared with untreated control RBCs. These results demonstrate the specific effects of elevated adherence and reduced deformability of oxidized RBCs on vascular resistance. These effects can be additive, depending on the oxidation conditions. The oxidation-induced changes applied in this study are moderate compared with those observed in RBCs in pathological states. Yet, they caused a considerable increase in vascular resistance, thus demonstrating the potency of RBC/EC adherence and RBC deformability in determining resistance to blood flow in vivo.  相似文献   

6.
Adherence of Plasmodium falciparum-infected RBCs (PRBC) to endothelial cells causes PRBC sequestration in cerebral microvessels and is considered to be a major contributor to the pathogenesis of cerebral malaria. Both CD36 and thrombospondin (TSP) are glycoproteins that mediate PRBC adherence to endothelial cells in vitro. Because they are both expressed on the surface of endothelial cells, they probably contribute to PRBC sequestration and vascular occlusion in vivo. By applying affinity labeling of receptor binding sites with purified ligands, we showed for the first time that both CD36 and TSP can bind independently to the PRBC surface and that the PRBC receptor(s) for CD36 and TSP are localized specifically to the electron-dense knob protrusions of the PRBC surface. These findings may help in efforts to develop a malaria vaccine to prevent cerebral malaria.  相似文献   

7.
Vascular endothelial cells (ECs) are constantly subjected to blood flow-induced shear stress and the influences of neighboring smooth muscle cells (SMCs). In the present study, a coculture flow system was developed to study the effect of shear stress on EC-SMC interactions. ECs and SMCs were separated by a porous membrane with only the EC side subjected to the flow condition. When ECs were exposed to a shear stress of 12 dynes/cm2 for 24 h, the cocultured SMCs tended to orient perpendicularly to the flow direction. This perpendicular orientation of the cocultured SMCs to flow direction was not observed when ECs were exposed to a shear stress of 2 dynes/cm2. Under the static condition, long and parallel actin bundles were observed in the central regions of the cocultured SMCs, whereas the actin filaments localized mainly at the periphery of the cocultured ECs. After 24 h of flow application, the cocultured ECs displayed very long, well-organized, parallel actin stress fibers aligned with the flow direction in the central regions of the cells. Immunostaining of platelet endothelial cell adhesion molecule-1 confirmed the elongation and alignment of the cocultured ECs with the flow direction. Coculture with SMCs under static condition induced EC gene expressions of growth-related oncogene-alpha and monocyte chemotactic protein-1, and shear stress was found to abolish these SMC-induced gene expressions. Our results suggest that shear stress may serve as a down-regulator for the pathophysiologically relevant gene expression in ECs cocultured with SMCs.  相似文献   

8.
Stem cell transplantation is an appealing potential therapy for vascular diseases and an indispensable key step in vascular tissue engineering. Substantial effort has been made to differentiate stem cells toward vascular cell phenotypes, including endothelial cells (ECs) and smooth muscle cells. The microenvironment of vascular cells not only contains biochemical factors that influence differentiation but also exerts hemodynamic forces, such as shear stress and cyclic strain. More recently, studies have shown that shear stress can influence the differentiation of stem cells toward ECs. A deep understanding of the responses and underlying mechanisms involved in this process is essential for clinical translation. This review highlights current data supporting the role of shear stress in stem cell differentiation into ECs. Potential mechanisms and signaling cascades for transducing shear stress into a biological signal are proposed. Further study of stem cell responses to shear stress will be necessary to apply stem cells for pharmacological applications and cardiovascular implants in the realm of regenerative medicine.  相似文献   

9.
Arterial hemodynamic shear stress and blood vessel stiffening both significantly influence the arterial endothelial cell (EC) phenotype and atherosclerosis progression, and both have been shown to signal through cell-matrix adhesions. However, the cooperative effects of fluid shear stress and matrix stiffness on ECs remain unknown. To investigate these cooperative effects, we cultured bovine aortic ECs on hydrogels matching the elasticity of the intima of compliant, young, or stiff, aging arteries. The cells were then exposed to laminar fluid shear stress of 12 dyn/cm2. Cells grown on more compliant matrices displayed increased elongation and tighter EC-cell junctions. Notably, cells cultured on more compliant substrates also showed decreased RhoA activation under laminar shear stress. Additionally, endothelial nitric oxide synthase and extracellular signal-regulated kinase phosphorylation in response to fluid shear stress occurred more rapidly in ECs cultured on more compliant substrates, and nitric oxide production was enhanced. Together, our results demonstrate that a signaling cross talk between stiffness and fluid shear stress exists within the vascular microenvironment, and, importantly, matrices mimicking young and healthy blood vessels can promote and augment the atheroprotective signals induced by fluid shear stress. These data suggest that targeting intimal stiffening and/or the EC response to intima stiffening clinically may improve vascular health.  相似文献   

10.
Endothelial cells (ECs) are constantly exposed to shear stress, the action of which triggers signaling pathways and cellular responses. During inflammation, cytokines such as IL-6 increase in plasma. In this study, we examined the effects of steady flow on IL-6-induced endothelial responses. ECs exposed to IL-6 exhibited STAT3 activation via phosphorylation of Tyr705. However, when ECs were subjected to shear stress, shear force-dependent suppression of IL-6-induced STAT3 phosphorylation was observed. IL-6 treatment increased the phosphorylation of JAK2, an upstream activator of STAT3. Consistently, shear stress significantly reduced IL-6-induced JAK2 activation. Pretreatment of ECs with an inhibitor of MEK1 did not alter this suppression by shear stress, indicating that extracellular signal-regulated kinase (ERK1/2) was not involved. However, pretreatment of ECs with an endothelial nitric oxide synthase inhibitor (nitro-L-arginine methyl ester) attenuated this inhibitory effect of shear stress on STAT3 phosphorylation. Shear stress-treated ECs displayed decreased nuclear transmigration of STAT3 and reduced STAT3 binding to DNA. Intriguingly, ECs exposed to IL-6 entered the cell cycle, as evidenced by increasing G2/M phase, and shear stress to these ECs significantly reduced IL-6-induced cell cycle progression. STAT3-mediated IL-6-induced cell cycle was confirmed by the inhibition of the cell cycle in ECs infected with adenovirus carrying the inactive mutant of STAT3. Our study clearly shows that shear stress exerts its inhibitory regulation by suppressing the IL-6-induced JAK2/STAT3 signaling pathway and thus inhibits IL-6-induced EC proliferation. This shear force-dependent inhibition of IL-6-induced JAK2/STAT3 activation provides new insights into the vasoprotective effects of steady flow on ECs against cytokine-induced responses. shear stress; nitric oxide; cell cycle  相似文献   

11.
Control of angiogenesis is a major challenge to promotion of vascularization in the field of tissue engineering. In particular, shear stress is recognized as an important mechanical factor controlling new vessel formation. However, the effects of steady and pulsatile shear stress on endothelial cell (EC) network formation remain unclear. Here, we systematically investigated their effects. Compared with pulsatile shear stress, steady shear stress at 1.0 Pa increased cell numbers in EC networks as well as the distribution of networks and pseudopodia in the deep range after 48 h. To further investigate the process of EC network growth, we focused on the effect of flow frequency on network elongation dynamics. Pulsatile shear stress at 1.0 Pa increased the extension and retraction velocities and separation of networks, resulting in the formation of unstable EC networks. In contrast, steady shear stress application resulted in the formation of extended and stable EC networks composed of many cells. Thus, two types of three-dimensional network growth were observed, depending on flow pulsatility. A combination of the type of ECs, such as aortic and microvascular ECs, and flow characteristics, such as flow magnitude and frequency, may have important implications for the construction of well-developed three-dimensional EC networks.  相似文献   

12.
Plasmodium falciparum, the most virulent of the human malaria parasites, causes up to one million deaths per year. The parasite spends part of its lifecycle inside the red blood cells (RBCs) of its host. As it grows it ingests the RBC cytoplasm, digesting it in an acidic vacuole. Free haem released during haemoglobin digestion is detoxified by conversion to inert crystals of haemozoin. Malaria pathology is evident during the blood stage of the infection and is exacerbated by adhesion of infected RBCs to blood vessel walls, which prevents splenic clearance of the infected cells. Cytoadherence is mediated by surface-exposed virulence proteins that bind to endothelial cell receptors. These 'adhesins' are exported to the RBC surface via an exomembrane system that is established outside the parasite in the host cell cytoplasm. Antimalarial drugs that interfere with haem detoxification, or target other parasite-specific processes, have been effective in the treatment of malaria, but their use has been dogged by the development of resistance. Similarly, efforts to develop an effective blood vaccine are hindered by the variability of surface-exposed antigens.  相似文献   

13.
Despite significant global efforts, a completely effective vaccine against Plasmodium falciparum, the species responsible for the most serious form of malaria, has not been yet obtained. One of the most promising approaches consists in combining chemically synthesized minimal subunits of parasite proteins involved in host cell invasion, which has led to the identification of peptides with high binding activity (named HABPs) to hepatocyte and red blood cell (RBC) surface receptors in a large number of sporozoite and merozoite proteins, respectively. Among these proteins is the merozoite surface protein 11 (MSP11), which shares important structural and immunological features with the antimalarial vaccine candidates MSP1, MSP3, and MSP6. In this study, 20‐mer‐long synthetic peptides spanning the complete sequence of MSP11 were assessed for their ability to bind specifically to RBCs. Two HABPs with high ability to inhibit invasion of RBCs in vitro were identified (namely HABPs 33595 and 33606). HABP‐RBC bindings were characterized by means of saturation assays and Hill analysis, finding cooperative interactions of high affinity for both HABPs (nH of 1.5 and 1.2, Kd of 800 and 600 nM for HABPs 33595 and 33606, respectively). The nature of the possible RBC receptors for MSP11 HABPs was studied in binding assays to enzyme‐treated RBCs and cross‐linking assays, finding that both HABPs use mainly a sialic acid‐dependent receptor. An analysis of the immunological, structural and polymorphic characteristics of MSP11 HABPs supports including these peptides in further studies with the aim of designing a fully effective protection‐inducing vaccine against malaria. J. Cell. Biochem. 110: 882–892, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
《Biophysical journal》2021,120(21):4663-4671
Because of their compromised deformability, heat denatured erythrocytes have been used as labeled probes to visualize spleen tissue or to assess the ability of the spleen to retain stiff red blood cells (RBCs) for over three decades, e.g., see Looareesuwan et al. N. Engl. J. Med. (1987). Despite their good accessibility, it is still an open question how heated RBCs compare to certain diseased RBCs in terms of their biomechanical and biorheological responses, which may undermine their effective usage and even lead to misleading experimental observations. To help answering this question, we perform a systematic computational study of the hemorheological properties of heated RBCs with several physiologically relevant static and hemodynamic settings, including optical-tweezers test, relaxation of prestretched RBCs, RBC traversal through a capillary-like channel and a spleen-like slit, and a viscometric rheology test. We show that our in silico RBC models agree well with existing experiments. Moreover, under static tests, heated RBCs exhibit deformability deterioration comparable to certain disease-impaired RBCs such as those in malaria. For RBC traversal under confinement (through microchannel or slit), heated RBCs show prolonged transit time or retention depending on the level of confinement and heating procedure, suggesting that carefully heat-treated RBCs may be useful for studying splenic- or vaso-occlusion in vascular pathologies. For the rheology test, we expand the existing bulk viscosity data of heated RBCs to a wider range of shear rates (1–1000 s−1) to represent most pathophysiological conditions in macro- or microcirculation. Although heated RBC suspension shows elevated viscosity comparable to certain diseased RBC suspensions under relatively high shear rates (100–1000 s−1), they underestimate the elevated viscosity (e.g., in sickle cell anemia) at low shear rates (<10 s−1). Our work provides mechanistic rationale for selective usage of heated RBC as a potentially useful model for studying the abnormal traversal dynamics and hemorheology in certain blood disorders.  相似文献   

15.
Fluid shear stress due to blood flow can modulate functions of endothelial cells (ECs) in blood vessels by activating mechano-sensors, signaling pathways, and gene and protein expressions. Laminar shear stress with a definite forward direction causes transient activations of many genes that are atherogenic, followed by their down-regulation; laminar shear stress also up-regulates genes that inhibit EC growth. In contrast, disturbed flow patterns with little forward direction cause sustained activations of these atherogenic genes and enhancements of EC mitosis and apoptosis. In straight parts of the arterial tree, laminar shear stress with a definite forward direction has anti-atherogenic effects. At branch points, the complex flow patterns with little net direction are atherogenic. Thus, the direction of shear stress has important physiological and pathophysiological effects on vascular ECs.  相似文献   

16.
17.
Shear stress is one of mechanical constraints which are exerted by blood flow on endothelial cells (ECs). To adapt to shear stress, ECs align in the direction of flow through adherens junction (AJ) remodeling. However, mechanisms regulating ECs alignment under shear stress are poorly understood. The scaffold protein IQ domain GTPase activating protein 1 (IQGAP1) is a scaffold protein which couples cell signaling to the actin and microtubule cytoskeletons and is involved in cell migration and adhesion. IQGAP1 also plays a role in AJ organization in epithelial cells. In this study, we investigated the potential IQGAP1 involvement in the endothelial cells alignment under shear stress. Progenitor-derived endothelial cells (PDECs), transfected (or not) with IQGAP1 small interfering RNA, were exposed to a laminar shear stress (1.2 N/m2) and AJ proteins (VE-cadherin and β-catenin) and IQGAP1 were labeled by immunofluorescence. We show that IQGAP1 is essential for ECs alignment under shear stress. We studied the role of IQGAP1 in AJs remodeling of PDECs exposed to shear stress by studying cell localization and IQGAP1 interactions with VE-cadherin and β-catenin by immunofluorescence and Proximity Ligation Assays. In static conditions, IQGAP1 interacts with VE-cadherin but not with β-catenin at the cell membrane. Under shear stress, IQGAP1 lost its interaction from VE-cadherin to β-catenin. This “switch” was concomitant with the loss of β-catenin/VE-cadherin interaction at the cell membrane. This work shows that IQGAP1 is essential to ECs alignment under shear stress and that AJ remodeling represents one of the mechanisms involved. These results provide a new approach to understand ECs alignment under to shear stress.  相似文献   

18.
The blood-brain barrier (BBB) is essential for maintaining brain homeostasis and low permeability. Because disruption of the BBB may contribute to many brain disorders, they are of considerable interests in the identification of the molecular mechanisms of BBB development and integrity. We here report that the giant protein AHNAK is expressed at the plasma membrane of endothelial cells (ECs) forming specific blood-tissue barriers, but is absent from the endothelium of capillaries characterized by extensive molecular exchanges between blood and extracellular fluid. In the brain, AHNAK is widely distributed in ECs with BBB properties, where it co-localizes with the tight junction protein ZO-1. AHNAK is absent from the permeable brain ECs of the choroid plexus and is down-regulated in permeable angiogenic ECs of brain tumors. In the choroid plexus, AHNAK accumulates at the tight junctions of the choroid epithelial cells that form the blood-cerebrospinal fluid (CSF) barrier. In EC cultures, the regulation of AHNAK expression and its localization corresponds to general criteria of a protein involved in barrier organization. AHNAK is up-regulated by angiopoietin-1 (Ang-1), a morphogenic factor that regulates brain EC permeability. In bovine cerebral ECs co-cultured with glial cells, AHNAK relocates from the cytosol to the plasma membrane when endothelial cells acquire BBB properties. Our results identify AHNAK as a protein marker of endothelial cells with barrier properties.  相似文献   

19.
20.
WS(?) 1442 is a special extract of hawthorn leaves with flowers used for the treatment of mild cardiac failure. The activation of endothelial nitric oxide synthase (eNOS) has been shown to contribute to its vasodilating properties. Quite recently it has been demonstrated that red blood cells (RBCs) express a functional NO-synthase (rbcNOS) and rbcNOS activation has been associated with increased RBC deformability. The aim of the present study was to determine whether WS(?) 1442 is able to activate rbcNOS, to induce NO-formation in RBC and to alter RBC-deformability. Blood from healthy volunteers was incubated with WS(?) 1442 (25-100 μg/ml) for up to 30 min. RbcNOS activation was detected by immunohistochemical staining of phosphorylated rbcNOS and NO-formation was examined by diaminofluorescein (DAF) fluorescence. RBC deformability was measured by a laser assisted optical rotational cell analyzer. Serine 1177 of RbcNOS (rbcNOS Ser(1177)) was time- and concentration-dependently phosphorylated by WS(?) 1442. Rates of rbcNOS Ser(1177) phosphorylation were up to 149% higher in RBCs treated with WS(?) 1442 in comparison to control (DMSO 0.05%). WS(?) 1442 induced a time-dependent increase in NO-formation in RBCs which reached its maximum after 5 min. An increase in shear stress (0.3-50 Pa) caused an increase in RBC deformability. WS(?) 1442 did not change either basal or maximal RBC-deformability or shear stress sensitivity of RBC at normoxia. CONCLUSION: WS(?) 1442 activates rbcNOS and causes NO-formation in RBCs. WS(?) 1442-dependent NO-formation however does not affect RBC-deformability at normoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号