首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our previous work showed that Zbed3 is overexpressed in nonsmall cell lung cancer and that down‐regulation of Zbed3 inhibited β‐catenin expression and cancer cell proliferation and invasiveness. Here, we investigated Zbed3's ability to promote lung cancer cell proliferation and invasion and the involvement of the Axin/TPC/glycogen synthase kinase 3β (Gsk‐3β) complex to the response. Coimmunoprecipitation assays showed that wild‐type Zbed3 bound to Axin but a Zbed3 mutant lacking the Axin binding site did not. In A549 and H1299 lung cancer cells, Zbed3 overexpression promoted cancer cell proliferation and invasiveness, as well as Wnt signalling and expression of downstream mediators, including β‐catenin, cyclin D1 and MMP7 (P < 0.05). In contrast, the Zbed3 mutant failed to enhance β‐catenin expression (P > 0.05), and its ability to promote cancer cell proliferation and invasiveness was much less than wild‐type Zbed3 (P < 0.05). The ability of Zbed3 to increase β‐catenin levels was abolished by Axin knockdown in A549 cells (P > 0.05). Similarly, treating the cells with a GSK‐3β inhibitor abolished Zbed3's ability to increase β‐catenin levels and Wnt signalling. These results indicate that Zbed3 enhances lung cancer cell proliferation and invasiveness at least in part by inhibiting Axin/adenomatous polyposis coli/GSK‐3β‐mediated negative regulation of β‐catenin levels.  相似文献   

2.
3.
Studies have suggested a possible correlation between the newly identified E3 ubiquitin ligase ring finger protein 146 (RNF146) and tumor development. However, until now, studies on RNF146 have been restricted to poly(ADP-ribosyl)ation and ubiquitin ligation, whereas the role of RNF146 in tumor biology has rarely been reported. In the present study, the role of RNF146 in non-small cell lung cancer (NSCLC) was investigated. The results showed that the expression of RNF146 was increased in clinical lung cancer samples and cell lines. RNF146 expression correlated with tumor size, differentiation level, lymphatic metastasis, pTNM staging, and prognosis of patients in stage I. RNF146 expression was negatively correlated with Axin expression but positively correlated with the nuclear expression of β-catenin in NSCLC tissues. RNF146 downregulated the expression of Axin in lung cancer cell lines and induced the expression and nuclear distribution of β-catenin. Overexpression of RNF146 in NSCLC cell lines increased the levels of cyclinD1, cyclinE, and CDK4, promoted cell cycle G0/G1-S transitions, and regulated cell proliferation. Overexpression of RNF146 led to upregulated levels of matrix metalloproteinases 2 and 7 and enhanced lung cancer cell invasiveness, events that were mediated by the classical Wnt/β-catenin signaling pathway. In summary, the data in the present study indicate that RNF146 regulated the development and progression of NSCLC by enhancing cell growth, invasion, and survival, suggesting that RNF146 may be a potential treatment target in NSCLC.  相似文献   

4.
Ubiquitin activating enzyme 2 (UBA2) is a basic component of E1-activating enzyme in the SUMOylation system. Expression and function of UBA2 in human cancers are largely unknown. In this study we investigate UBA2 expression the function in human non–small-cell lung cancer. Immunochemistry study showed that UBA2 was overexpressed in cancer tissues (53.3%, 40 of 75) compared with normal lung tissues (14.3%, 4 of 28) (P < 0.05). Immunostaining of UBA2 was mainly detected in nucleus. Overexpression of UBA2 in cancer tissues was significantly associated with poor differentiation, large tumor size ( > 5.0 cm), higher T stages (T3 + 4), lymph node metastasis and advanced TNM stages (III + IV). In vitro study showed that UBA2 was expressed in A549, 95D, H1975, and H1299 cells. Knockdown of UBA2 in A549 cells significantly inhibited cancer cell proliferation and upregulated cancer cell apoptosis (P < 0.05). Cell cycle analysis showed that knockdown of UBA2 in A549 cell significantly increased the G1 and G2/M phase cells and reduced the S phase cells (P < 0.05). Gene expression profile after knockdown of UBA2 in A549 cells showed that the most related function was cell cycle, cell death and survival, and cellular growth and proliferation. Western blot analysis study showed that knockdown of UBA2 significantly inhibited expression of poly(ADP-ribose) polymerase 1, mini-chromosome maintenance 7 (MCM7), MCM2, MCM3 and MCM7. These results indicated that UBA2 was a critical cell cycle and proliferation regulator and may be a novel cancer marker in this malignant tumor.  相似文献   

5.
Certain indirubin derivatives are potent cyclin-dependent kinase (CDK) and glycogen synthase kinase (GSK-3β) inhibitors and may be effective against various cancers. We evaluated the effects of aloisine A, alsterpaullone, aminopurvalanol, indirubin-3′-oxime, 6-Br-indirubin-3′-oxime, kenpaullone, olomoucine and roscovitine on cell proliferation, prostate-specific antigen (PSA) expression, androgen receptor (AR) activation, and GSK-3β and β-catenin expression in androgen-dependent LNCaP human prostate cancer cells. Effects were also evaluated in MDA-kb2 human breast cancer cells containing an AR-responsive luciferase construct. Steroid-deprived LNCaP cells were exposed to indirubins ± dihydrotestosterone (DHT, 0.1 nM) and cell proliferation was assessed by MTT assay after 120 h. PSA expression was determined by real-time quantitative RT-PCR after 24 h. Cytoplasmic and nuclear GSK-3β/β-catenin expression and phosphorylation status was determined by Western blotting. Effects on MDA-kb2 luciferase expression were determined after 24 h using Steady-Glo (Promega). Indirubin-3′-oxime, 6-Br-indirubin-3′-oxime, alsterpaullone and kenpaullone increased LNCaP cell proliferation and PSA expression (0.03–1 μM; apoptosis occurred >1 μM), whereas aminopurvalanol significantly (p < 0.05) reduced DHT-stimulated PSA expression (31%) at 1 nM. The other indirubin derivatives had no effect. The same was observed for induction of AR-dependent MDA-kb2 luciferase expression. Kenpaullone (1, 3 μM) decreased the active- and increased the inactive form of cytoplasmic GSK-3β, and increased nuclear AR and β-catenin accumulation. Flutamide (10 μM), unexpectedly, also strongly increased nuclear β-catenin accumulation. Indirubin derivatives that were potent GSK-3β inhibitors (relative to CDK1) stimulated LNCaP cell proliferation and other androgenic responses, suggesting (in a cancer treatment context) these compounds may increase AR-dependent prostate cancer growth if not used within an appropriate therapeutic dose-range.  相似文献   

6.
Kyung Tae Noh  Eui-Ju Choi 《FEBS letters》2010,584(18):4097-4101
GSK-3β is a basally active kinase. Axin forms a complex with GSK-3β and β-catenin; this complex promotes the GSK-3β-dependent phosphorylation of β-catenin, thereby inducing its degradation. However, the inhibition of GSK-3β provokes cell migration via the dysregulation of β-catenin. In this study, we determined that the level of apoptosis signal-regulating kinase 1 (ASK1) was lower in a metastatic breast cancer cell line, compared to that of non-metastatic cancer cell lines and the knockdown of ASK1 not only induces β-catenin activation via the inhibition of GSK-3β and collapsing the subsequent protein complex by regulating Axin dynamics, but also stimulates cell migration. Together, the blockage of the GSK-3β-β-catenin pathway resulting from the knockdown of ASK1 modulates the migration of breast cancer cells.  相似文献   

7.

Probiotics have been shown to have beneficial properties in attenuating the risk of colorectal cancer (CRC) development. However, functional evidence to support such effects for some probiotic bacteria are relatively unknown. Here, we document a significant antioxidant, anti-proliferative and pro-apoptotic activities of Lactobacillus acidophilus ATCC 314 and Lactobacillus fermentum NCIMB 5221 on CRC cells, particularly when used in combination (La-Lf). Furthermore, a superior synergistic activity on the inhibition of tumor growth and modulation of cell proliferation and epithelial markers in the Apc Min/+ CRC mouse model was explored, based on the expression levels of Ki-67, E-cadherin, β-catenin, and cleaved caspase-3 (CC3) proteins. The anti-cancer activity of La-Lf co-culture was significantly enhanced in vitro with significant reduced proliferation (38.8 ± 6.9 %, P = 0.009) and increased apoptosis (413 RUL, P < 0.001) towards cancer cells, as well as significant protection of normal colon cell growth from toxic treatment (18.6 ± 9.8 %, P = 0.001). La-Lf formulation (1010cfu/animal/day) altered aspects of intestinal tumorigenesis by significantly reducing intestinal tumor multiplicity (1.7-fold, P = 0.016) and downregulating cellular proliferation markers, including β-catenin (P = 0.041) and Ki-67 (P = 0.008). In conclusion, La-Lf showed greater protection against intestinal tumorigenesis supporting a potential use as a biotherapeutic for the prevention of CRC.

  相似文献   

8.

Background

Canonical Wnt signals, transduced by stabilized β-catenin, play similar roles across animals in maintaining stem cell pluripotency, regulating cell differentiation, and instructing normal embryonic development. Dysregulated Wnt/β-catenin signaling causes diseases and birth defects, and a variety of regulatory processes control this pathway to ensure its proper function and integration with other signaling systems. We previously identified GTP-binding protein 2 (Gtpbp2) as a novel regulator of BMP signaling, however further exploration revealed that Gtpbp2 can also affect Wnt signaling, which is a novel finding reported here.

Results

Knockdown of Gtpbp2 in Xenopus embryos causes severe axial defects and reduces expression of Spemann-Mangold organizer genes. Gtpbp2 knockdown blocks responses to ectopic Wnt8 ligand, such as organizer gene induction in ectodermal tissue explants and induction of secondary axes in whole embryos. However, organizer gene induction by ectopic Nodal2 is unaffected by Gtpbp2 knockdown. Epistasis tests, conducted by activating Wnt signal transduction at sequential points in the canonical pathway, demonstrate that Gtpbp2 is required downstream of Dishevelled and Gsk3β but upstream of β-catenin, which is similar to the previously reported effects of Axin1 overexpression in Xenopus embryos. Focusing on Axin in Xenopus embryos, we find that knockdown of Gtpbp2 elevates endogenous or exogenous Axin protein levels. Furthermore, Gtpbp2 fusion proteins co-localize with Dishevelled and co-immunoprecipitate with Axin and Gsk3b.

Conclusions

We conclude that Gtpbp2 is required for canonical Wnt/β-catenin signaling in Xenopus embryos. Our data suggest a model in which Gtpbp2 suppresses the accumulation of Axin protein, a rate-limiting component of the β-catenin destruction complex, such that Axin protein levels negatively correlate with Gtpbp2 levels. This model is supported by the similarity of our Gtpbp2-Wnt epistasis results and previously reported effects of Axin overexpression, the physical interactions of Gtpbp2 with Axin, and the correlation between elevated Axin protein levels and lost Wnt responsiveness upon Gtpbp2 knockdown. A wide variety of cancer-causing Wnt pathway mutations require low Axin levels, so development of Gtpbp2 inhibitors may provide a new therapeutic strategy to elevate Axin and suppress aberrant β-catenin signaling in cancer and other Wnt-related diseases.
  相似文献   

9.
10.
ZCCHC9 is a type of CCHC type zinc-finger containing protein which was found to be expressed in some tissues including brain and testicles in mice. Expression and function of ZCCHC9 in human tissues including cancer was largely unknown. In this study, we investigated the expression and function of ZCCHC9 in human non-small cell lung cancer (NSCLC) and the related molecular mechanism. Immunochemistrical standing showed that ZCCHC9 was mainly located in the nucleus in bronchial epithelial cells and epithelial cells of submucosal glands (58.3% [14/24]). But in NSCLC cells ZCCHC9 was mainly located in the cytoplasm and the positive rate was 54.5% (60/110). Ectopic cytoplasmic expression of ZCCHC9 in cancer tissues was significantly associated with advanced TNM stages (III+IV), lymph node metastasis, and poor clinical outcome (P < 0.05). Overexpression of cytoplasmic ZCCHC9 using transfection of ZCCHC9 cDNA in A549 and NCI-H1299 cells significantly upregulated the proliferation and invasion of these cancer cells in vitro (P < 0.05). Western blot study showed that overexpression of cytoplasmic ZCCHC9 significantly upregulated expression of p-JNK, Cyclin D1, and MMP7 (P < 0.05). Next we used the inhibitor of JNK pathway to inhibit the activity of the JNK pathway and the results showed that co-addition of SP600125 significantly abolished the function of ZCCHC9 to promote the proliferation and invasion of cancer cells. These results indicate that cytoplasmic ZCCHC9 could promote the proliferation and invasion of NSCLC through the JNK pathway and may be a promising cancer maker.  相似文献   

11.
Circadian locomotor output cycles kaput (Clock) gene is a core gene in the circadian rhythm system that is involved in cancer cell proliferation. However, the molecular mechanism of Clock gene participate in the cancer cell proliferation is unclear. Previous studies demonstrated that cell proliferation could be regulated by the canonical Wnt pathway (also known as the Wnt/β-catenin pathway), and the Wnt/β-catenin pathway had a relation with the circadian system. To investigate whether the Clock gene affects the proliferation of breast cancer cell by regulating the expression of β-catenin, we knocked down the Clock expression of mouse breast cancer cells (4T1) by RNA interference. Then detected their proliferation rates using CCK8 assay and the expression of the β-catenin gene by real-time PCR and Western blot. The results showed that the proliferation of the Clock knocked down 4T1 cells is slower than the control. The expression level of β-catenin of these 4T1 cells is reduced. Our study showed that Clock gene knocked down inhibiting the proliferation of the 4T1 cells, probably by suppressing the expression of β-catenin.  相似文献   

12.
13.
Arctigenin, a dibenzylbutyrolactone lignan, enhances cisplatin‐mediated cell apoptosis in cancer cells. Here, we sought to investigate the effects of arctigenin on cisplatin‐treated non‐small‐cell lung cancer (NSCLC) H460 cells. The 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay and annexin‐V/propidium iodide staining were performed to analyze the proliferation and apoptosis of H460 cells. Arctigenin dose‐dependently suppressed cell proliferation and potentiated cell apoptosis, coupled with increased cleavage of caspase‐3 and poly(ADP‐ribose) polymerase. Moreover, arctigenin sensitized H460 cells to cisplatin‐induced proliferation inhibition and apoptosis. Arctigenin alone or in combination with cisplatin had a significantly lower amount of survivin. Ectopic expression of survivin decreased cell apoptosis induced by arctigenin (P < 0.05) or in combination with cisplatin (P < 0.01). Moreover, arctigenin (P < 0.05) or in combination with cisplatin (P < 0.01) induced G1/G0 cell‐cycle arrest. Our data provide evidence that arctigenin has a therapeutic potential in combina‐tion with chemotherapeutic agents for NSLC.  相似文献   

14.
ABSTRACT

KHC-4 is a 2-phenyl-4-quinolone analogue that exhibits anticancer activity. Aberrant activation of β-catenin signaling contributes to prostate cancer development and progression. Therefore, targeting β-catenin expression could be a useful approach to treating prostate cancer. We found that KHC-4 can inhibit β-catenin expression and its signaling pathway in DU145 prostate cancer cells. Treatment with KHC-4 decreased total β-catenin expression and concomitantly decreased β-catenin levels in both the cytoplasm and nucleus of cells. KHC-4 treatment also inhibited β-catenin expression and that of its target proteins, PI3K, AKT, GSK3β and TBX3. We monitored the stability of β-catenin with the proteasomal inhibitor, MG132, in DU145 cells and found that MG132 reversed KHC-4-induced proteasomal β-catenin degradation. We verified CDK1/β-catenin expression in KHC-4 treated DU145 cells. We found that roscovitine treatment reversed cell proliferation by arresting the cell cycle at the G2/M phase and β-catenin expression caused by KHC-4 treatment. We suggest that KHC-4 inhibits β-catenin signaling in DU145 prostate cancer cells.  相似文献   

15.

In the present study, we aimed to investigate the modulatory effects of a potential probiotic bacterium Lactobacillus gasseri ATCC 33323 on Helicobacter pylori-induced inflammatory response and gene expression in human gastric adenocarcinoma (AGS) cell line. The gastric epithelial cells were coinfected with a collection of H. pylori clinical strains alone or in combination with L. gasseri at a multiplicity of infection (MOI) of 1:100 for each bacterium, and incubated for different time points of 3, 6, and 12 h. IL-8 secretion from coinfected AGS cells after incubation at each time point was measured by an enzyme-linked immunosorbent assay (ELISA). The mRNA expression of IL-8, Bcl-2, β-catenin, integrin α5, and integrin β1 genes was determined by quantitative RT-PCR amplification of total RNA extracted from coinfected epithelial cells. L. gasseri significantly (P < 0.05 and P < 0.01) decreased the production of IL-8 in AGS cells coinfected with H. pylori strains at 6 h post-infection. We also detected that L. gasseri significantly (P < 0.05) down-regulated the gene expression level of IL-8 in H. pylori-stimulated AGS cells after 6 and 12 h of coinfection. Similarly, L. gasseri caused a significant decrease (P < 0.05) in mRNA expression of Bcl-2, β-catenin, integrin α5, and integrin β1 genes in AGS cells at 3 and 6 h after infection with H. pylori strains as compared with non-infected control cells. In conclusion, our results demonstrated that L. gasseri ameliorates H. pylori-induced inflammation and could be developed as a supplementation to the current treatment regimens administrated against H. pylori infection.

  相似文献   

16.
Abstract

The canonical Wnt-pathway plays a number of crucial roles in the development of organism. Malfunctions of this pathway lead to various diseases including cancer. In the inactivated state, this pathway involves five proteins, Axin, CKI-α, GSK-3β, APC, and β-catenin. We analyzed these proteins by a number of computational tools, such as PONDR®VLXT, PONDR®VSL2, MoRF-II predictor and Hydrophobic Cluster Analysis (HCA) to show that each of the Wnt-pathway proteins contains several intrinsically disordered regions. Based on a comprehensive analysis of published data we conclude that these disordered regions facilitate protein-protein interactions, post-translational modifications, and signaling. The scaffold protein Axin and another large protein, APC, act as flexible concentrators in gathering together all other proteins involved in the Wnt-pathway, emphasizing the role of intrinsically disordered regions in orchestrating the complex protein-protein interactions. We further explore the intricate roles of highly disordered APC in regulation of β-catenin function. Intrinsically disordered APC helps the collection of β-catenin from cytoplasm, facilitates the β-catenin delivery to the binding sites on Axin, and controls the final detachment of β-catenin from Axin.  相似文献   

17.
Gastric cancer is a common malignant tumor. Studies from our laboratory or others have shown that long non-coding RNA (lncRNA) zinc finger antisense (ZFAS)1 often acts as an oncogene. However, the molecular underpinnings of how ZFAS1 regulates gastric cancer remain to be elucidated. Results showed that ZFAS1 expression was upregulated, and microRNA-200b-3p (miR-200b) expression was downregulated in gastric cancer tissues. MiR-200b overexpression suppressed the proliferation, cell cycle process, and Wnt/β-catenin signaling of gastric cancer cells. Subsequently, we identified miR-200b is a target of ZFAS1 and Wnt1 is a target of miR-200b. Furthermore, promotion of cancer malignant progression and activation of Wnt/β-catenin signaling induced by ZFAS1 was counteracted by increasing miR-200b expression. In vivo, ZFAS1 knockdown suppressed the tumorigenesis with the upregulated miR-200b and the inactive Wnt/β-catenin signaling. Summarily, we demonstrated a critical role of miR-200b in gastric cancer, and ZFAS1 can promote malignant progression through regulating miR-200b mediated Wnt/β-catenin signaling.  相似文献   

18.
The canonical Wnt signalling pathway is a critical pathway involved in the proliferation of cells. It has been well-established that it plays the central role during colorectal carcinogenesis and development. Yet the exact molecular mechanism of how the canonical Wnt pathway is fine-tuned remains elusive. We found that SLC35C1, a GDP-fucose transporter, negatively regulates the Wnt signalling pathway. We show here that SLC35C1 is reduced in all colon cancer by both immunohistochemistry images and TCGA data, whereas β-catenin is increased. Down-regulation of SLC35C1 is also detected by real-time PCR in stage 3 and stage 4 colorectal cancer tissues. Moreover, analysing the TCGA database with cBioPortal reveals the negative correlation of SLC35C1 mRNA level to the expression of β-catenin. Reduced SLC35C1 significantly promotes cell proliferation and colony formation of HEK293 cells. Meanwhile, in HEK293 cells silencing SLC35C1 activates canonical Wnt pathway, whereas overexpressing SLC35C1 inhibits it. Consistently, the reduction of SLC35C1 in HEK293 cells also elevated the mRNA level of Wnt target genes C-myc, Axin2 and Cyclin D1, as well as the secretion of Wnt3a. In conclusion, we identified SLC35C1 as a negative regulator of the Wnt signalling pathway in colon cancer. Decreased SLC35C1 may cause over-activation of Wnt signalling in colorectal cancer.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号