首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Melatonin and its metabolites have been demonstrated to modulate the glucose, dyslipidemia and other metabolic disorders. This study aimed to explore a novel mechanism responsible for diabetic cardiomyopathy development, and also validated whether melatonin played a protective role in repairing damaged heart in the diabetes setting. Our data demonstrated that spleen tyrosine kinase (Syk) was activated by chronic high-glucose stimulus and contributed to the development of diabetic cardiomyopathy. However, genetic ablation of Syk or supplementation of melatonin to inhibit Syk activation improved diabetic myocardial function, reduced cardiac fibrosis and preserved cardiomyocytes viability. Mechanistically, activated Syk repressed the expression and activity of mitochondrial complex I (COX-1), unfortunately evoking mitochondrial and/or cellular ROS overproduction. Subsequently, excessive superoxide facilitated SERCA peroxidation which failed to re-uptake the cytoplasmic calcium back into endoplasmic reticulum (ER), leading to cellular calcium overload. Finally, activated oxidative stress and calcium overload collectively promoted the high-glucose-induced cardiomyocytes death via caspase-9-related mitochondrial apoptosis and caspase-12-involved ER apoptosis, respectively. Interestingly, inhibition of Syk via Syk genetic ablation or melatonin administration blocked Syk/COX-1/SERCA signalling pathways, and thus abolished mitochondrial- and ER-mediated cardiomyocyte death in the setting of diabetes. Based on these results, we suggest a novel pathway by which high-glucose stimulus induces diabetic cardiomyopathy is possibly through an activation of Syk/COX-1/SERCA axis which could be abrogated by melatonin treatment.  相似文献   

2.
Cardiac inflammation and oxidative stress play a key role in the pathogenesis of diabetic cardiomyopathy (DCM). The anti-aging protein Klotho has been found to protect cells from inflammation and oxidative stress. The current study aimed to explore the cardioprotective effects of Klotho on DCM and the underlying mechanisms. H9c2 cells and neonatal cardiomyocytes were incubated with 33 mM glucose in the presence or absence of Klotho. Klotho pretreatment effectively inhibited high glucose-induced inflammation, ROS generation, apoptosis, mitochondrial dysfunction, fibrosis and hypertrophy in both H9c2 cells and neonatal cardiomyocytes. In STZ-induced type 1 diabetic mice, intraperitoneal injection of Klotho at 0.01 mg/kg per 48 h for 3 months completely suppressed cardiac inflammatory cytokines and oxidative stress and prevented cardiac cell death and remodeling, which subsequently improved cardiac dysfunction without affecting hyperglycemia. This study revealed that Klotho may exert its protective effects by augmenting nuclear factor erythroid 2-related factor 2 (Nrf2) expression and inactivating nuclear factor κB (NF-κB) activation both in vitro and in vivo. Thus, this work demonstrated for the first time that the anti-aging protein Klotho may be a potential therapeutic agent to treat DCM by inhibiting oxidative stress and inflammation. We also demonstrated the critical roles of the Nrf2 and NF-κB pathways in diabetes-stimulated cardiac injuries and indicated that they may be key therapeutic targets for diabetic complications.  相似文献   

3.
Diabetic cardiomyopathy has become a major contributor to the increased mortality of diabetic patients. Although the development and progression of diabetic cardiomyopathy are considered to be associated with diabetes-derived oxidative stress, the precise mechanisms for and effectively preventive approaches to diabetic cardiomyopathy remain to be explored. Recent studies showed that reactive oxygen or nitrogen species (ROS/RNS) not only play a critical role in the initiation of diabetic cardiomyopathy, but also play an important role in physiological signaling. Therefore, this review will first discuss the dual roles of ROS/RNS in the physiological signaling and pathogenic remodeling leading to cardiomyopathy under diabetic conditions. The significant prevention of diabetic cardiomyopathy by metallothionein (MT) as a potent and nonspecific antioxidant will be also summarized. It is clearly revealed that although dual roles of peroxynitrite-nitrated proteins have been indicated under both physiological and pathogenic conditions, suppression of nitrative damage by MT in the diabetic heart is the major mechanism responsible for its prevention of diabetic cardiomyopathy. Finally the potential for clinical enhancement of the cardiac MT expression to prevent or delay the occurrence of cardiomyopathy in diabetic patients will also be addressed.  相似文献   

4.

Background

Ischemia–reperfusion injury has been proven to induce organ dysfunction and death, although the mechanism is not fully understood. Long non-coding RNAs (lncRNAs) have drawn wide attention with their important roles in the gene expression of some biological processes and diseases, including myocardial ischemia–reperfusion (I/R) injury. In this paper, a total of 26 Sprague–Dawley (SD) rats were randomized into two groups: sham and ischemia–reperfusion (I/R) injury. Hemorrhagic shock was induced by removing 45% of the estimated total blood volume followed by reinfusion of shed blood. High-throughput RNA sequencing was used to analyze differentially expressed (DE) lncRNAs and messenger RNAs (mRNAs) in the heart tissue 4 h after reperfusion. Myocardial function was also evaluated.

Results

After resuscitation, the decline of myocardial function of shocked animals, expressed by cardiac output, ejection fraction, and myocardial performance index (MPI), was significant (p?<?0.05). DE lncRNAs and mRNAs were identified by absolute value of fold change?≥?2 and the false discovery rate ≤?0.001. In rats from the I/R injury group, 851 lncRNAs and 1015 mRNAs were significantly up-regulated while 1533 lncRNAs and 1702 m RNAs were significantly down-regulated when compared to the sham group. Among the DE lncRNAs, we found 12 location-associated with some known apoptosis-related protein-coding genes which were up-regulated or down-regulated accordingly, including STAT3 and Il1r1. Real time PCR assays confirmed that the expression levels of five location-associated lncRNAs (NONRATT006032.2, NONRATT006033.2, NONRATT006034.2, NONRATT006035.2 and NONRATT029969.2) and their location-associated mRNAs (STAT3 and Il1r1) in the rats from the I/R injury group were all significantly up-regulated versus the sham group.

Conclusions

The DE lncRNAs (NONRATT006032.2, NONRATT006033.2, NONRATT006034.2 and NONRATT006035.2) could be compatible with their role in myocardial protection by stimulating their co-located gene (STAT3) after hemorrhagic shock and resuscitation. The final prognosis of I/R injury might be regulated by different genes, which is regarded as a complex network.
  相似文献   

5.
6.
7.
8.
Long non‐coding RNAs (lncRNAs) have been implicated in the regulation of gene expression at various levels. However, to date, the expression profile of lncRNAs in status epilepticus (SE) was unclear. In our study, the expression profile of lncRNAs was investigated by high‐throughput sequencing based on a lithium/pilocarpine‐induced SE model in immature rats. Furthermore, weighted correlation network analysis (WGCNA), gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to construct co‐expression networks and establish functions of the identified hub lncRNAs in SE. The functional role of a hub lncRNA (NONRATT010788.2) in SE was investigated in an in vitro model. Our results indicated that 7082 lncRNAs (3522 up‐regulated and 3560 down‐regulated), which are involved in cell proliferation, inflammatory responses, angiogenesis and autophagy, were dysregulated in the hippocampus of immature rats with SE. Additionally, WGCNA identified 667 up‐regulated hub lncRNAs in turquoise module that were involved in apoptosis, inflammatory responses and angiogenesis via regulation of HIF‐1, p53 and chemokine signalling pathways and via inflammatory mediator regulation of TRP channels. Knockdown of an identified hub lncRNA (NONRATT010788.2) inhibited neuronal apoptosis in vitro. Taken together, our study is the first to demonstrate the expression profile and potential function of lncRNAs in the hippocampus of immature rats with SE. The defined hub lncRNAs may participate in the pathogenesis of SE via lncRNA‐miRNA‐mRNA network.  相似文献   

9.
10.
Diabetes mellitus is one of the most common chronic diseases affecting millions of people worldwide. Cardiovascular complication including myocardial infarction is one of the major causes of death in diabetic patients. Diabetes mellitus induces abnormal pathological findings including cell hypertrophy, neuropathy, interstitial fibrosis, myocytolysis and apoptosis and lipid deposits in the heart. In addition, the cytoplasmic organelles of cardiomyocytes including the plasma membrane, mitochondrion and sarcoplasmic reticulum are also impaired in both type I and type II diabetes. Hyperglycaemia is a major aetiological factor in the development of diabetic cardiomyopathy in patients suffering from diabetes. Hyperglycaemia promotes the production of reactive oxygen (ROS) and nitrogen species (RNS). The release of ROS and RNS induces oxidative stress leading to abnormal gene expression, faulty signal transduction and apoptosis of cardiomyocytes. Hyperglycaemia also induces apoptosis by p53 and the activation of the cytochrome c-activated caspase-3 pathway. Stimulation of connective tissue growth factor and the formation of advanced glycation end products in extracellular matrix proteins induces collagen cross-linking and contribute to the fibrosis observed in the interstitium of the heart of diabetic subjects. In terms of signal transduction, defects in intracellular Ca2+ signalling due to alteration of expression and function of proteins that regulate intracellular Ca2+ also occur in diabetes. All of these abnormalities result in gross dysfunction of the heart. Beta-adrenoreceptor antagonists, ACE inhibitors, endothelin-receptor antagonist (Bonestan), adrenomedullin, hormones (insulin, IGF-1) and antioxidants (magniferin, metallothionein, vitamins C and E) reduce interstitial fibrosis and improve cardiac function in diabetic cardiomyopathy.  相似文献   

11.
Reactive oxygen species (ROS) is generated by oxidative stress and plays an important role in various cardiac pathologies. The SIRT1 signaling pathway and mitochondrial biogenesis play essential roles in mediating the production of ROS. SIRT1 activated by resveratrol protects cardiomyocytes from oxidative stress, but the exact mechanisms by which SIRT1 prevents oxidative stress, and its relationship with mitochondrial biogenesis, remain unclear. In this study, it was observed that after stimulation with 50 μM H2O2 for 6 h, H9C2 cells produced excessive ROS and downregulated SIRT1. The mitochondrial protein NDUFA13 was also downregulated by ROS mediated by SIRT1. Resveratrol induced the expression of SIRT1 and mitochondrial genes NDUFA1, NDUFA2, NDUFA13 and Mn-SOD. However, the production of these genes was reversed by SIRT1 inhibitor nicotinamide. These results suggest that resveratrol inhibits ROS generation in cardiomyocytes via SIRT1 and mitochondrial biogenesis signaling pathways.  相似文献   

12.
Accumulating evidence indicates that long non-coding RNAs (lncRNAs) play an important role in autism. Herein, we delineated the functions of LOC101927196 and its potential mitigation effect on a rat model of autism. We retrieved various bioinformatics databases and websites to screen differentially expressed lncRNAs associated with autism. Next, a rat model of autism was established with the neuron cells extracted for transfection of different plasmids. The regulatory effect of LOC101927196 on neuron cell proliferation, apoptosis as well as oxidative stress was also investigated. Firstly, microarray dataset GSE18123 revealed that LOC101927196 was poorly expressed in a rat model of autism. Poor development and growth and oxidative stress disorder were also observed in a rat model of autism. In addition, LOC101927196 targeting FZD3 played a vital role in a rat model of autism through the Wnt signaling pathway. Furthermore, we further demonstrated that over-expressed LOC101927196 blocked neuron cell proliferation and reduced oxidative stress levels, while promoting apoptosis by suppressing the activation of the Wnt signaling pathway. Our findings illustrate that up-regulated LOC101927196 attenuated oxidative stress disorder in a rat model of autism through suppressing the activation of Wnt signaling pathway by targeting FZD3.  相似文献   

13.
Oxidative-nitrosative stress and inflammatory responses are associated with endoplasmic reticulum (ER) stress in diabetic retinopathy, raising the possibility that disturbances in ER protein processing may contribute to CNS dysfunction in diabetics. Upregulation of the unfolded protein response (UPR) is a homeostatic response to accumulation of abnormal proteins in the ER, and the present study tested the hypothesis that the UPR is upregulated in two models for diabetes, cultured astrocytes grown in 25 mmol/L glucose for up to 4 weeks and brain of streptozotocin (STZ)-treated rats with diabetes for 1–7 months. Markers associated with translational blockade (phospho-eIF2α and apoptosis (CHOP), inflammatory response (inducible nitric oxide synthase, iNOS), and nitrosative stress (nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase, GAPDH) were not detected in either model. Nrf2 was present in nuclei of low- and high-glucose cultures, consistent with oxidative stress. Astrocytic ATF4 expression was not altered by culture glucose concentration, whereas phospho-IRE and ATF6 levels were higher in low- compared with high-glucose cultures. The glucose-regulated chaperones, GRP78 and GRP94, were also expressed at higher levels in low- than high-glucose cultures, probably due to recurrent glucose depletion between feeding cycles. In STZ-rat cerebral cortex, ATF4 level was transiently reduced at 4 months, and p-IRE levels were transiently elevated at 3 months. However, GRP78 and GRP94 expression was not upregulated, and iNOS, amyloid-β, and nuclear accumulation of GAPDH were not evident in STZ-diabetic brain. High-glucose cultured astrocytes and STZ-diabetic brain are relatively resistant to diabetes-induced ER stress, in sharp contrast with cultured retinal Müller cells and diabetic rodent retina.  相似文献   

14.
Neuropathic pain, a type of chronic and potentially disabling pain resulting from primary injury/dysfunction of the somatosensory nervous system and spinal cord injury, is one of the most intense types of chronic pain, which incurs a significant economic and public health burden. However, our understanding of its cellular and molecular pathogenesis is still far from complete. Long non‐coding RNAs (lncRNAs) are important regulators of gene expression and have recently been characterized as key modulators of neuronal functions. Emerging evidence suggested that lncRNAs are deregulated and play pivotal roles in the development of neuropathic pain. This review summarizes the current knowledge about the roles of deregulated lncRNAs (eg, KCNA2‐AS, uc.48+, NONRATT021972, MRAK009713, XIST, CCAT1) in the development of neuropathic pain. These studies suggested that specific regulation of lncRNAs or their downstream targets might provide novel therapeutic avenues for this refractory disease.  相似文献   

15.
Diabetic cardiomyopathy and heart failure have been recognized as the leading causes of mortality among diabetics. Diabetic cardiomyopathy has been characterized primarily by the manifestation of left ventricular dysfunction that is independent of coronary artery disease and hypertension among the patients affected by diabetes mellitus. A complex array of contributing factors including the hypertrophy of left ventricle, alterations of metabolism, microvascular pathology, insulin resistance, fibrosis, apoptotic cell death, and oxidative stress have been implicated in the pathogenesis of diabetic cardiomyopathy. Nevertheless, the exact mechanisms underlying the pathogenesis of diabetic cardiomyopathy are yet to be established. The critical involvement of multifarious factors including the vascular endothelial dysfunction, microangiopathy, reactive oxygen species (ROS), oxidative stress, mitochondrial dysfunction has been identified in the mechanism of pathogenesis of diabetic cardiomyopathy. Although it is difficult to establish how each factor contributes to disease, the involvement of ROS and mitochondrial dysfunction are emerging as front-runners in the mechanism of pathogenesis of diabetic cardiomyopathy. This review highlights the role of vascular endothelial dysfunction, ROS, oxidative stress, and mitochondriopathy in the pathogenesis of diabetic cardiomyopathy. Furthermore, the review emphasizes that the puzzle has to be solved to firmly establish the mitochondrial and/or ROS mechanism(s) by identifying their most critical molecular players involved at both spatial and temporal levels in diabetic cardiomyopathy as targets for specific and effective pharmacological/therapeutic interventions.  相似文献   

16.
Diabetes mellitus (DM) is a primary risk factor for cardiovascular diseases and heart failure. Activation of the retinoic acid receptor (RAR) and retinoid X receptor (RXR) has an anti-diabetic effect; but, a role in diabetic cardiomyopathy remains unclear. Using neonatal and adult cardiomyocytes, we determined the role of RAR and RXR in hyperglycemia-induced apoptosis and expression of renin-angiotensin system (RAS) components. Decreased nuclear expression of RARα and RXRα, activation of apoptotic signaling and cell apoptosis was observed in high glucose (HG) treated neonatal and adult cardiomyocytes and diabetic hearts in Zucker diabetic fatty (ZDF) rats. HG-induced apoptosis and reactive oxygen species (ROS) generation was prevented by both RAR and RXR agonists. Silencing expression of RARα and RXRα, by small interference RNA, promoted apoptosis under normal conditions and significantly enhanced HG-induced apoptosis, indicating that RARα and RXRα are required in regulating cell apoptotic signaling. Blocking angiotensin type 1 receptor (AT(1) R); but, not AT(2) R, attenuated HG-induced apoptosis and ROS generation. Moreover, HG induced gene expression of angiotensinogen, renin, AT(1) R, and angiotensin II (Ang II) synthesis were inhibited by RARα agonists and promoted by silencing RARα. Activation of RXRα, downregulated the expression of AT(1) R; and RXRα silencing accelerated HG induced expression of angiotensinogen and Ang II synthesis, whereas there was no significant effect on renin gene expression. These results indicate that reduction in the expression of RARα and RXRα has an important role in hyperglycemia mediated apoptosis and expression of RAS components. Activation of RAR/RXR signaling protects cardiomyocytes from hyperglycemia, by reducing oxidative stress and inhibition of the RAS.  相似文献   

17.
The present study aimed to analyze long noncoding RNA (lncRNA) and messenger RNA (mRNA) expression profiles in septic mice heart and to identify potential lncRNAs and mRNAs that be responsible for cardiac mitochondrial dysfunction during sepsis. Mice were treated with 10 mg/kg of lipopolysaccharides to induce sepsis. LncRNAs and mRNAs expression were evaluated by using lncRNA and mRNA microarray or real‐time polymerase chain reaction technique. LncRNA‐mRNA coexpression network assay, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed. The results showed that 1275 lncRNAs were differentially expressed in septic myocardium compared with those in the control group. A total of 2769 mRNAs were dysregulated in septic mice heart, most of which are mainly related to the process of inflammation, mitochondrial metabolism, oxidative stress, and apoptosis. Coexpression network analysis showed that 14 lncRNAs were highly correlated with 11 mitochondria‐related differentially expressed mRNA. Among all lncRNAs and their cis‐acting mRNAs, 41 lncRNAs‐mRNA pairs (such as NONMMUG004378 and Apaf1 gene) were enriched in GO terms and KEGG pathways. In summary, we gained some specific lncRNAs and their potential target mRNAs that might be involved in mitochondrial dysfunction in septic myocardium. These findings provide a panoramic view of lncRNA and might allow developing new treatment strategies for sepsis.  相似文献   

18.
Age‐related cataract is among the most common chronic disorders of ageing and is the world's leading blinding disorder. Long non‐coding RNAs play important roles in several biological processes and complicated diseases. However, the role of lncRNAs in the setting of cataract is still unknown. Here, we extracted total RNAs from the transparent and age‐matched cataractous human lenses, and determined lncRNA expression profiles using microarray analysis. We found that 38 lncRNAs were differentially expressed between transparent and cataractous lenses. 17 of 20 differentially expressed lncRNAs were further verified by quantitative RT‐PCRs. One top abundant lncRNA, MIAT, was specifically up‐regulated both in the plasma fraction of whole blood and aqueous humor of cataract patients. MIAT knockdown could affect the proliferation, apoptosis and migration of Human lens epithelial cells (HLECs) upon oxidative stress. Posterior capsule opacification (PCO) is a common complication of cataract surgery, which is associated with abnormal production of inflammatory factors. MIAT knockdown could repress tumour necrosis factor‐α‐induced abnormal proliferation and migration of HLECs, suggesting a potential role of MIAT in PCO‐related pathological process. Moreover, we found that MIAT acted as a ceRNA, and formed a feedback loop with Akt and miR‐150‐5p to regulate HLEC function. Collectively, this study provides a novel insight into the pathogenesis of age‐related cataract.  相似文献   

19.
Diabetes mellitus is one of the most common chronic diseases affecting millions of people worldwide. Cardiovascular complication including myocardial infarction is one of the major causes of death in diabetic patients. Diabetes mellitus induces abnormal pathological findings including cell hypertrophy, neuropathy, interstitial fibrosis, myocytolysis and apoptosis and lipid deposits in the heart. In addition, the cytoplasmic organelles of cardiomyocytes including the plasma membrane, mitochondrion and sarcoplasmic reticulum are also impaired in both type I and type II diabetes. Hyperglycaemia is a major aetiological factor in the development of diabetic cardiomyopathy in patients suffering from diabetes. Hyperglycaemia promotes the production of reactive oxygen (ROS) and nitrogen species (RNS). The release of ROS and RNS induces oxidative stress leading to abnormal gene expression, faulty signal transduction and apoptosis of cardiomyocytes. Hyperglycaemia also induces apoptosis by p53 and the activation of the cytochrome c-activated caspase-3 pathway. Stimulation of connective tissue growth factor and the formation of advanced glycation end products in extracellular matrix proteins induces collagen cross-linking and contribute to the fibrosis observed in the interstitium of the heart of diabetic subjects. In terms of signal transduction, defects in intracellular Ca2+ signalling due to alteration of expression and function of proteins that regulate intracellular Ca2+ also occur in diabetes. All of these abnormalities result in gross dysfunction of the heart. Beta-adrenoreceptor antagonists, ACE inhibitors, endothelin-receptor antagonist (Bonestan®), adrenomedullin, hormones (insulin, IGF-1) and antioxidants (magniferin, metallothionein, vitamins C and E) reduce interstitial fibrosis and improve cardiac function in diabetic cardiomyopathy. (Mol Cell Biochem 261: 187–191, 2004)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号