首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: The inherent treatment resistance of glioblastoma (GBM) can involve multiple mechanisms including checkpoint kinase (Chk1/2)-mediated increased DNA repair capability, which can attenuate the effects of genotoxic chemotherapies and radiation. The goal of this study was to evaluate diffusion-weighted magnetic resonance imaging (DW-MRI) as a biomarker for Chk1/2 inhibitors in combination with radiation for enhancement of treatment efficacy in GBM. EXPERIMENTAL DESIGN: We evaluated a specific small molecule inhibitor of Chk1/2, AZD7762, in combination with radiation using in vitro human cell lines and in vivo using a genetically engineered GBM mouse model. DW-MRI and T1-contrast MRI were used to follow treatment effects on intracranial tumor cellularity and growth rates, respectively. RESULTS: AZD7762 inhibited clonal proliferation in a panel of GBM cell lines and increased radiosensitivity in p53-mutated GBM cell lines to a greater extent compared to p53 wild-type cells. In vivo efficacy of AZD7762 demonstrated a dose-dependent inhibitory effect on GBM tumor growth rate and a reduction in tumor cellularity based on DW-MRI scans along with enhancement of radiation efficacy. CONCLUSION: DW-MRI was found to be a useful imaging biomarker for the detection of radiosensitization through inhibition of checkpoint kinases. Chk1/2 inhibition resulted in antiproliferative activity, prevention of DNA damage-induced repair, and radiosensitization in preclinical GBM tumor models, both in vitro and in vivo. The effects were found to be maximal in p53-mutated GBM cells. These results provide the rationale for integration of DW-MRI in clinical translation of Chk1/2 inhibition with radiation for the treatment of GBM.  相似文献   

2.
Evolving evidence supports that cyclooxygenase-1 (COX-1) takes part in colon carcinogenesis. The effects of COX-1 inhibition on colon cancer cells, however, remains obscured. In this study, we demonstrate that COX-1 inhibitor sc-560 inhibited colon cancer cell proliferation with concomitant G0/G1-phase cell cycle arrest. The anti-proliferative effect was associated with down-regulation of c-Fos, cyclin E2 and E2F-1 and up-regulation of p21Waf1/Cip1 and p27Kip1. In addition, sc-560 induced macroautophagy, an emerging mechanism of tumor suppression, as evidenced by the formation of LC3+ autophagic vacuoles, enhanced LC3 processing, and the accumulation of acidic vesicular organelles and autolysosomes. In this connection, 3-methyladenine, a Class III phosphoinositide 3-kinase inhibitor, significantly abolished the formation of LC3+ autophagic vacuoles and the processing of LC3 induced by sc-560. To conclude, this study reveals the unreported relationship between COX-1 and proliferation/macroautophagy of colon cancer cells.  相似文献   

3.
4.
Excessive generation of reactive oxygen species (ROS) in cancer cells is associated with cancer development, but the underlying mechanisms and therapeutic significance remain elusive. In this study, we reported that levels of ROS and p22phox expression are greatly increased in human prostate cancer tissues, and knockdown of p22phox by specific small interfering RNA (siRNA) decreased ROS levels in prostate cancer cells. We also showed that stable downregulation of p22phox in prostate cancer cells inhibited cell proliferation and colony formation, which was mediated by AKT and extracellular signal-regulated kinase (ERK)1/2 signaling pathways and their downstream molecules hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF). The NADPH oxidase subunit NOX1 was also elevated in prostate cancer cells, and was involved in activation of AKT/ERK/HIF-1/VEGF pathway and regulation of cell proliferation. Knockdown of p22phox resulted in inhibition of tumor angiogenesis and tumor growth in nude mice. These findings reveal a new function of p22phox in tumor angiogenesis and tumor growth, and suggest that p22phox is a potential novel target for prostate cancer treatment.  相似文献   

5.
Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyzes post-proline peptide bonds in peptides that are <30 amino acids in length. We recently reported that POP inhibition suppressed the growth of human neuroblastoma cells. The growth suppression was associated with pronounced G0/G1 cell cycle arrest and increased levels of the CDK inhibitor p27kip1 and the tumor suppressor p53. In this study, we investigated the mechanism of POP inhibition-induced cell growth arrest using a human gastric cancer cell line, KATO III cells, which had a p53 gene deletion. POP specific inhibitors, 3-({4-[2-(E)-styrylphenoxy]butanoyl}-l-4-hydroxyprolyl)-thiazolidine (SUAM-14746) and benzyloxycarbonyl-thioprolyl-thioprolinal, or RNAi-mediated POP knockdown inhibited the growth of KATO III cells irrespective of their p53 status. SUAM-14746-induced growth inhibition was associated with G0/G1 cell cycle phase arrest and increased levels of p27kip1 in the nuclei and the pRb2/p130 protein expression. Moreover, SUAM-14746-mediated cell cycle arrest of KATO III cells was associated with an increase in the quiescent G0 state, defined by low level staining for the proliferation marker, Ki-67. These results indicate that POP may be a positive regulator of cell cycle progression by regulating the exit from and/or reentry into the cell cycle by KATO III cells.  相似文献   

6.
Polo-like kinase 1 has been established as one of the most attractive targets for molecular cancer therapy. In fact, multiple small-molecule inhibitors targeting this kinase have been developed and intensively investigated. Recently, it has been reported that the cytotoxicity induced by Plk1 inhibition is elevated in cancer cells with inactive p53, leading to the hypothesis that inactive p53 is a predictive marker for the response of Plk1 inhibition. In our previous study based on different cancer cell lines, we showed that cancer cells with wild type p53 were more sensitive to Plk1 inhibition by inducing more apoptosis, compared with cancer cells depleted of p53. In the present work, we further demonstrate that in the presence of mitotic stress induced by different agents, Plk1 inhibitors strongly induced apoptosis in HCT116 p53+/+ cells, whereas HCT116 p53−/− cells arrested in mitosis with less apoptosis. Depletion of p53 in HCT116 p53+/+ or U2OS cells reduced the induction of apoptosis. Moreover, the surviving HCT116 p53−/− cells showed DNA damage and a strong capability of colony formation. Plk1 inhibition in combination with other anti-mitotic agents inhibited proliferation of tumor cells more strongly than Plk1 inhibition alone. Taken together, the data underscore that functional p53 strengthens the efficacy of Plk1 inhibition alone or in combination by strongly activating cell death signaling pathways. Further studies are required to investigate if the long-term outcomes of losing p53, such as low differential grade of tumor cells or defective DNA damage checkpoint, are responsible for the cytotoxicity of Plk1 inhibition.  相似文献   

7.
8.
The p75 neurotrophin receptor (p75NTR) plays a critical role in various neuronal and non-neuronal cell types by regulating cell survival, differentiation and proliferation. To evaluate the influence of p75NTR in breast cancer development, we have established and characterized breast cancer cells which stably overexpress p75NTR. We showed that p75NTR overexpression per se promoted cell survival to apoptogens with a concomitant slowdown of cell growth. The pro-survival effect is associated with an increased expression of the inhibitor of apoptosis protein-1 (c-IAP1), a decrease of TRAIL-induced cleavage of PARP, procaspase 9 and procaspase 3, and a decrease of cytochrome C release from the mitochondria. The anti-proliferative effect is due to a cell accumulation in G0/G1, associated with a decrease of Rb phosphorylation and an increase of p21waf1. Interestingly, inhibition of p21waf1 with siRNA not only restores proliferation but also abolishes the pro-survival effect of p75NTR, indicating the key role of p21waf1 in the biological functions of p75NTR. Finally, using a SCID mice xenograft model, we showed that p75NTR overexpression favors tumor growth and strongly increases tumor resistance to anti-tumoral treatment.Together, our findings suggest that p75NTR overexpression in breast tumor cells could favor tumor survival and contribute to tumor resistance to drugs. This provides a rationale to consider p75NTR as a potential target for the future design of innovative therapeutic strategies.  相似文献   

9.
A recent report showed that reversine treatment could induce murine myoblasts dedifferentiation into multipotent progenitor cells and inhibit proliferation of some tumors, and other reports showed that apoptosis of lung adenocarcinoma cells could be induced by aspirin. The aim of the present study was to evaluate the synergistic antitumor effects of reversine and aspirin on cervical cancer. The inhibition rate of reversine and aspirin on cervical cancer cell lines’ (HeLa and U14) was determined by MTT method, cell cycle of HeLa and U14 cells was analyzed by FACS, mitochondrial membrane potential of HeLa and U14 was detected using a JC-1 kit. HeLa and U14 colony formation was analyzed by soft agar colony formation assay. The expression of caspase-3, Bcl-2/Bax, cyclin D1 and p21 was detected by qRT-PCR and Western Blotting. Moreover, tumor weight and tumor volume was assessed using a murine model of cervical cancer with U14 cells subcutaneously (s.c.) administered into the neck, separately or combined with drug administration via the intraperitoneal (i.p.) route. The inhibition rate of cells in the combination group (10 μmol/L reversine, 10 mmol/L aspirin) increased significantly in comparison to that when the drugs were used alone (P < 0.05); moreover, this combination could synergistically inhibit the proliferation of five cervical cancer cell lines (HeLa, U14, Siha, Caski and C33A). In the therapeutic mouse model, tumor weight and tumor volume of cervical cancer bearing mice was more reduced when compared with the control agents (P < 0.05) in tumor-bearing mice. The combination of reversine and aspirin exerts synergistic growth inhibition and apoptosis induction on cervical cancers cells.  相似文献   

10.
11.
The Hsp90 chaperone has become the attractive pharmacological target to inhibit tumor cell proliferation. However, tumor cells can evolve with mechanisms to overcome Hsp90 inhibition. Using human neuroblastoma, we have investigated one such limitation. Here, we demonstrate that neuroblastoma cells overcome the interference of tumor suppressor p16INK4a in cell proliferation, which is due to its latent interaction with CDK4 and CDK6. Cells also displayed impedance to the pharmacological inhibition of cancer chaperone Hsp90 inhibition with respect to induced cytotoxicity. However, the p16INK4a knockdown has triggered the activation of cyclin-CDK6 axis and enhanced the cell proliferation. These cells are eventually sensitized to Hsp90 inhibition by activating the DNA damage response mediated through p53-p21WAF-1 axis and G1 cell cycle exit. While both CDK4 and CDK6 have exhibited low affinity to p16INK4a, CDK6 has exhibited high affinity to Hsp90. Destabilizing the CDK6 interaction with Hsp90 has prolonged G2/M cell cycle arrest fostering to premature cellular senescence. The senescence driven cells exhibited compromised metastatic potential both in vitro as well as in mice xenografts. Our study unravels that cancer cells can be adapted to the constitutive expression of tumor suppressors to overcome therapeutic interventions. Our findings display potential implication of Hsp90 inhibitors to overcome such adaptations.  相似文献   

12.
To provide suitable models for human GBM cancer stem cells in vitro and in vivo, and investigate their biological characteristics, a new human GBM cancer stem-like cell line, WJ2, was established in this experiment through serial passages from adherent monolayer culture to nonadherent tumor sphere culture in turns; Its partial biological characteristics were studied through cell proliferation and tumor sphere assay; cell cycle distribution, side population, and CD133 phenotype were analyzed with FCM. The expressions of CD133, Nestin, and GFAP of cancer stem-like cells and xenograft tumor cells were detected with RT-PCR and immunohistochemistry. Biological characterization, side population, CD133 phenotype and CD133 Nestin, BCRP-1, Wnt-1 gene expression revealed the stemness of this cancer stem-like cell line. Tumorigenicity heterotransplanted in nude mice; histopathological characteristics of xenograft tumor, and expressions of CD133, Nestin, and GFAP of xenograft tumor cells indicated that xenograft tumors recapitulated the phenotype and biological characterization of human primary GBM. All findings of this experimental study suggested that WJ2 cancer stem-like cell line could accurately mimic human GBM cancer stem cell in vitro and in vivo; it would be useful in the cellular and molecular studies as well as in testing novel therapies of CSC-based anti-cancer therapies for human GBM.  相似文献   

13.
14.
Accumulating evidence indicates that Checkpoint kinase 1 (CHEK1) plays an essential role in tumor cells and that it could induce cell proliferation and could be related to prognosis in multiple types of cancer. However, the biological role and molecular mechanism of CHEK1 in GBM still remain unclear. In this study, we identified that CHEK1 expression was enriched in glioblastoma (GBM) tumors and was functionally required for tumor proliferation and that its expression was associated to poor prognosis in GBM patients. Mechanically, CHEK1 induced radio resistance in GBM cells, and CHEK1 knockdown increased cell apoptosis when combined with radiotherapy via regulation of the DNA repair/recombination protein 54L (RAD54L) expression. Therapeutically, we found that CHEK1 inhibitor attenuated tumor growth both in vitro and in vivo. Collectively, CHEK1 promotes proliferation, induces radio resistance in GBM, and could become a potential therapeutic target for GBM.  相似文献   

15.

Purpose

The hypoxic microenvironment of glioblastoma multiforme (GBM) is thought to increase resistance to cancer therapies. Recent evidence suggests that hypoxia induces protein phosphatase 2A (PP2A), a regulator of cell cycle and cell death. The effects of PP2A on GBM tumor cell proliferation and survival during hypoxic conditions have not been studied.

Experimental Design

Expression of PP2A subunits and HIF-α proteins was measured in 65 high-grade astrocytoma and 18 non-neoplastic surgical brain specimens by western blotting. PP2A activity was measured by an immunoprecipitation assay. For in vitro experiments, GBM-derived tumor stem cell-like cells (TSCs) were exposed to severe hypoxia produced by either CoCl2 or 1% O2. PP2A activity was inhibited either by okadaic acid or by shRNA depletion of the PP2A C subunit. Effects of PP2A activity on cell cycle progression and cell survival during hypoxic conditions were assessed using flow cytometry.

Results

In our patient cohort, PP2A activity was positively correlated with HIF-1∝ protein expression (P = 0.002). Patients with PP2A activity levels above 160 pMP had significantly worse survival compared to patients with levels below this threshold (P = 0.002). PP2A activity was an independent predictor of survival on multivariable analysis (P = 0.009). In our in vitro experiments, we confirmed that severe hypoxia induces PP2A activity in TSCs 6 hours after onset of exposure. PP2A activity mediated G1/S phase growth inhibition and reduced cellular ATP consumption in hypoxic TSCs. Conversely, inhibition of PP2A activity led to increased cell proliferation, exhaustion of intracellular ATP, and accelerated P53-independent cell death of hypoxic TSCs.

Conclusions

Our results suggest that PP2A activity predicts poor survival in GBM. PP2A appears to reduce the metabolic demand of hypoxic TSCs and enhances tumor cell survival. Modulation of PP2A may be a potential target for cancer therapy.  相似文献   

16.
Several clinical and experimental studies have demonstrated that regular use of aspirin (acetylsalicylic acid, ASA) correlates with a reduced risk of cancer and that the drug exerts direct anti‐tumour effects. We have previously reported that ASA inhibits proliferation of human glioblastoma multiforme‐derived cancer stem cells. In the present study, we analysed the effects of ASA on nervous system‐derived cancer cells, using the SK‐N‐SH (N) human neuroblastoma cell line as an experimental model. ASA treatment of SK‐N‐SH (N) dramatically reduced cell proliferation and motility, and induced neuronal‐like differentiation, indicated by the appearance of the neuronal differentiation marker tyrosine hydroxylase (TH) after 5 days. ASA did not affect cell viability, but caused a time‐dependent accumulation of cells in the G0/G1 phase of the cell cycle, with a concomitant decrease in the percentage of cells in the G2 phase. These effects appear to be mediated by a COX‐independent mechanism involving an increase in p21Waf1 and underphosphorylated retinoblastoma (hypo‐pRb1) protein levels. These findings may support a potential role of ASA as adjunctive therapeutic agent in the clinical management of neuroblastoma.  相似文献   

17.
18.
The production of hydrogen peroxide (H2O2) drives tumourigenesis in ulcerative colitis (UC). Recently, we showed that H2O2 activates DNA damage checkpoints in human colonic epithelial cells (HCEC) through c‐Jun N‐terminal Kinases (JNK) that induces p21WAF1. Moreover, caspases circumvented the G1/S and intra‐S checkpoints, and cells accumulated in G2/M. The latter observation raised the question of whether repeated H2O2 exposures alter JNK activation, thereby promoting a direct passage of cells from G2/M arrest to driven cell cycle progression. Here, we report that increased proliferation of repeatedly H2O2‐exposed HCEC cells (C‐cell cultures) was associated with (i) increased phospho‐p46 JNK, (ii) decreased total JNK and phospho‐p54 JNK and (iii) p21WAF1 down‐regulation. Altered JNK activation and p21WAF1 down‐regulation were accompanied by defects in maintaining G2/M and mitotic spindle checkpoints through adaptation, as well as by apoptosis resistance following H2O2 exposure. This may cause increased proliferation of C‐cell cultures, a defining initiating feature in the inflammation‐carcinoma pathway in UC. We further suggest that dysregulated JNK activation is attributed to a non‐apoptotic function of caspases, causing checkpoint adaptation in C‐cell cultures. Additionally, loss of cell‐contact inhibition and the overcoming of senescence, hallmarks of cancer, contributed to increased proliferation. Furthermore, there was evidence that p54 JNK inactivation is responsible for loss of cell‐contact inhibition. We present a cellular model of UC and suggest a sinusoidal pattern of proliferation, which is triggered by H2O2‐induced reactive oxygen species generation, involving an interplay between JNK activation/inactivation, p21WAF1, c‐Fos, c‐Jun/phospho‐c‐Jun, ATF2/phospho‐ATF2, β‐catenin/TCF4‐signalling, c‐Myc, CDK6 and Cyclin D2, leading to driven cell cycle progression.  相似文献   

19.
20.
In the present study, we report the effect and molecular mechanism of Ligularia fischeri (LF) on proliferation and migration in human lung cancer cells. LF-mediated inhibition of cell proliferation in p53 wild-type A549 and p53-deficient H1299 cells is accompanied by reduced expression of cell cycle-related proteins such as cyclin-dependent kinases and cyclins, resulting in pRb hypophosphorylation and G1 phase cell cycle arrest. In contrast, LF inhibits cell migration in A549 cells, but not in H1299 cells. These regulatory effects of LF on cell proliferation and migration are associated with inactivation of mitogenic signaling pathways such as ERK, Akt and p70S6K, and down-regulation of epidermal growth factor receptor and integrin β1 expression. Collectively, these findings suggest further development and evaluation of LF for the prevention and treatment of lung cancer with mutated p53 as well as wild-type p53.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号