首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Deciphering molecular pathways involved in the early steps of prostate oncogenesis requires both in vitro and in vivo models derived from human primary tumors. However the few recognized models of human prostate epithelial cancer originate from metastases. To date, very few models are proposed from primary tumors and immortalizing normal human prostate cells does not recapitulate the natural history of the disease. By culturing human prostate primary tumor cells onto human epithelial extra-cellular matrix, we successfully selected a new prostate cancer cell line, IGR-CaP1, and clonally-derived subclones. IGR-CaP1 cells, that harbor a tetraploid karyotype, high telomerase activity and mutated TP53, rapidly induced subcutaneous xenografts in nude mice. Furthermore, IGR-CaP1 cell lines, all exhibiting negativity for the androgen receptor and PSA, express the specific prostate markers alpha-methylacyl-CoA racemase and a low level of the prostate-specific membrane antigen PSMA, along with the prostate basal epithelial markers CK5 and CK14. More importantly, these clones express high CD44, CD133, and CXCR4 levels associated with high expression of α2β1-integrin and Oct4 which are reported to be prostate cancer stemness markers. RT-PCR data also revealed high activation of the Sonic Hedgehog signalling pathway in these cells. Additionally, the IGR-CaP1 cells possess a 3D sphere-forming ability and a renewal capacity by maintaining their CSC potential after xenografting in mice. As a result, the hormone-independent IGR-CaP1 cellular clones exhibit the original features of both basal prostate tissue and cancer stemness. Tumorigenic IGR-CaP1 clones constitute invaluable human models for studying prostate cancer progression and drug assessment in vitro as well as in animals specifically for developing new therapeutic approaches targeting prostate cancer stem cells.  相似文献   

3.
Prostate cancer has become a global health concern and is one of the leading causes of cancer death of men after lung and gastric cancers. It has been suggested that the 3-hydroxy-3-methyl-glutarylcoenzyme-CoA (HMG-CoA) reductase inhibitor atorvastatin shows anticancer activity in prostate cancer cell lines. To this end, we analyzed the influence of atorvastatin on the cell adhesion and differentiation of CD133+CD44+ cells derived from prostate cancer biopsies and peripheral blood. CD133+CD44+ cells were treated with atorvastatin (16–64 μM) for different time periods. Cell adhesion to endothelial cell monolayers and differentiation into prostate cancer cells were evaluated. α1, β1 and α2β1 integrins adhesion receptors and the downstream target of atorvastatin Rho-dependent kinase (ROCK) and focal adhesion kinase (FAK) were analyzed by Western blot. Further blocking studies with the ROCK inhibitor H1152, anti-FAK antibody and anti-integrin α1 and β1 antibodies were carried out. Atorvastatin treatment inhibited dose-dependently cell attachment to endothelium and differentiation. The inhibitory effect of atorvastatin on cell adhesion was associated with decreased expression of integrins α1 and β1 and phosphorylated MYPT1 and FAK. Furthermore, atorvastatin strongly reduced ROCK1 and FAK mediated differentiation of CD133+CD44+ cells, which was confirmed by antibody treatment. Atorvastatin modified the expression of cell adhesion molecules and differentiation markers. These beneficial effects of atorvastatin may be mediated by ROCK and FAK signaling pathway. The data presented may point to novel treatment options for prostate cancer.  相似文献   

4.
Pathological assessment of excised tumour and surgical margins in colorectal cancer (CRC) play crucial role in prognosis after surgery. Molecular assessment of margins could be more sensitive and informative than conventional histopathological analysis. Considering this view, we evaluated the distal surgical margins for expression of cancer stem cell (CSC) markers. Cellular and molecular assessment of normal, tumour and distal margin tissues were performed by flow cytometry, real‐time q‐PCR and immuno‐histochemical analysis for CRC patients after tumour excision. CRC patients were evaluated for expression of CSC markers in their normal, tumour and distal tissues. Flow cytometry assay revealed CD133 and CD44 enriched cells in distal margin and tumour compared to normal colorectal tissues, which was further confirmed by immunohistochemistry. Most importantly, immunohistochemistry also revealed the enrichment of CSC markers expression in pathologically negative distal margins. Patients with distal margin enriched for CD133 expression showed an increased recurrence rate and decreased disease‐free survival. This study proposes that although distal margin seems to be tumour free in conventional histopathological analysis, it could harbour cells enriched for CSC markers. Further CD133 could be a promising molecule to be used in molecular pathology for disease prognosis after surgery in CRC patients.  相似文献   

5.
Colorectal cancer (CRC) remains both common and fatal, and its successful treatment is greatly limited by the development of stem cell‐like characteristics (stemness) and chemoresistance. MiR‐30‐5p has been shown to function as a tumor suppressor by targeting the Wnt/β‐catenin signaling pathway, but its activity in CRC has never been assessed. We hypothesized that miR‐30‐5p exerts anti‐oncogenic effects in CRC by regulating the USP22/Wnt/β‐catenin signaling axis. In the present study, we demonstrate that tissues from CRC patients and human CRC cell lines show significantly decreased miR‐30‐5p family expression. After identifying the 3’UTR of USP22 as a potential binding site of miR‐30‐5p, we constructed a luciferase reporter containing the potential miR‐30‐5p binding site and measured the effects on USP22 expression. Western blot assays showed that miR‐30‐5p decreased USP22 protein expression in HEK293 and Caco2 CRC cells. To evaluate the effects of miR‐30‐5p on CRC cell stemness, we isolated CD133 + CRC cells (Caco2 and HCT15). We then determined that, while miR‐30‐5p is normally decreased in CD133 + CRC cells, miR‐30‐5p overexpression significantly reduces expression of stem cell markers CD133 and Sox2, sphere formation, and cell proliferation. Similarly, we found that miR‐30‐5p expression is normally reduced in 5‐fluorouracil (5‐FU) resistant CRC cells, whereas miR‐30‐5p overexpression in 5‐FU resistant cells reduces sphere formation and cell viability. Inhibition of miR‐30‐5p reversed the process. Finally, we determined that miR‐30‐5p attenuates the expression of Wnt/β‐catenin signaling target genes (Axin2 and MYC), Wnt luciferase activity, and β‐catenin protein levels in CRC stem cells.  相似文献   

6.
7.
Tumor metastasis is the leading cause of death in cancer patients. Identifying metastatic biomarkers in tumor cells would help cancer diagnoses and the development of therapeutic targets. Yes-associated protein (YAP) plays an important role in organ development and has gained much attention in tumorigenesis. However, the role of YAP and the underlying mechanism in tumor metastasis of colorectal cancer (CRC) is still unclear. In this study, we generated metastatic 116-LM cells from the HCT116 CRC cell line. We found that the capacity for tumor aggressiveness was elevated in 116-LM cells and identified that YAP and its mRNA level were upregulated in 116-LM cells. Moreover, expression of YAP was found to correlate with epithelial-mesenchymal transition (EMT) marker expressions, whereas suppression of YAP decreased EMT marker expressions and impeded tumor migration and invasion. Additionally, upregulation of YAP was identified in colon cancer patients, and it was correlated with EMT gene expressions. Furthermore, we identified LBH589, a histone deacetylase inhibitor, that was capable of inhibiting tumor growth and aggressiveness in both HCT116 and 116-LM cells. LBH589 potentially inhibited YAP and its mRNA expression, accompanied by diminished expressions of YAP downstream genes and EMT markers. Together, YAP plays a crucial role in aggressiveness and metastasis of CRC, and YAP may be an attractive therapeutic target.  相似文献   

8.
Cancer stem cells (CSCs) exhibit specific characteristics including decontrolled self-renewal, tumor-initiating, promoting, and metastatic potential, abnormal stemness signaling, and chemotherapy resistance. Thus, targeting CSC is becoming an emerging cancer treatment. α-Mangostin has been shown to have potent and multiple anticancer activities. Accordingly, we hypothesized that α-mangostin may diminish the stemness and proliferation of CSC-like cervical cancer cells. In our results, comparing to the parent cells, CSC-like SiHa and HeLa cells highly expressed CSC marker Sox2, Oct4, Nanog, CK-17, and CD49f. α-Mangostin significantly reduced the cell viability, sphere-forming ability, and expression of the CSC stemness makers of CSC-like cervical cancer cells. Further investigation showed that α-mangostin induced mitochondrial depolarization and mitochondrial apoptosis signaling, including upregulation of Bax, downregulation of Mcl-1 and Bcl-2, and activation of caspase-9/3. Moreover, α-mangostin synergically enhanced the cytotoxicity of cisplatin on CSC-like SiHa cells by promoting mitochondrial apoptosis and inhibiting the expression of CSC markers. Consistent with in vitro findings, in vivo tumor growth assay revealed that α-mangostin administration significantly inhibited the growth of inoculated CSC-like SiHa cells and synergically enhanced the antitumor effect of cisplatin. Our findings indicate that α-mangostin can reduce the stemness and proliferation of CSC-like SiHa and HeLa cells and promote the cytotoxicity of cisplatin, which may attribute to the mitochondrial apoptosis activation. Thus, it suggests that α-mangostin may have clinical potential to improve chemotherapy for cervical cancer by targeting cervical CSC.  相似文献   

9.
Several surface markers have been proposed for the identification and characterization of colorectal cancer stem-like cells (CR-CSLCs). However, their reliability in CR-CSLCs identification remains controversial. This study evaluated the correlation between all candidate surface marker's expression and CSLCs properties (tumorigenicity) through monitoring in vivo tumor incidence and final tumor volume. PubMed, Web of Science, and Scopus databases were systematically searched until November 2017. A total of 27 studies were found that met the inclusion criteria for cluster of differentiation 133 (CD133) and CD44 markers. Results indicated that either CD133 or CD44 positive cells caused about twofold increase in tumor volume compared with the negative cells (p < 0.05). In two groups of cells derived from primary tumors and cell lines, CD133 + cells had 25 and 1.45 times higher tumor incidence potential than CD133 cells, respectively ( p < 0.05). Also, cohort evaluation showed that CD133 overexpression at protein level is a marker of poor overall survival in colorectal cancer (CRC) patients. While CD44 + cells displayed twofold tumorigenicity compared with the negative cells ( p < 0.05), combination of CD44 and CD133 showed about sevenfold tumorigenicity potential ( p < 0.05). In conclusion, the present meta-analysis suggests that CD133 is a robust biomarker to identify primary tumor CSLCs and can be proposed as a prognostic marker of CRC patient whereas it should be used with caution in cell lines. It seems to be more reliable to use CD133 in combination with CD44 as target biomarkers for the isolation of CR-CSLCs in both cell line and primary tumor cells populations.  相似文献   

10.
More than 40% of patients with luminal breast cancer treated with endocrine therapy agent tamoxifen demonstrate resistance. Emerging evidence suggests tumor initiating cells (TICs) and aberrant activation of Src and Akt signaling drive tamoxifen resistance and relapse. We previously demonstrated that aryl hydrocarbon receptor ligand aminoflavone (AF) inhibits the expression of TIC gene α6-integrin and disrupts mammospheres derived from tamoxifen-sensitive breast cancer cells. In the current study, we hypothesize that tamoxifen-resistant (TamR) cells exhibit higher levels of α6-integrin than tamoxifen-sensitive cells and that AF inhibits the growth of TamR cells by suppressing α6-integrin–Src–Akt signaling. In support of our hypothesis, TamR cells and associated mammospheres were found to exhibit elevated α6-integrin expression compared with their tamoxifen-sensitive counterparts. Furthermore, tumor sections from patients who relapsed on tamoxifen showed enhanced α6-integrin expression. Gene expression profiling from the TCGA database further revealed that basal-like breast cancer samples, known to be largely unresponsive to tamoxifen, demonstrated higher α6-integrin levels than luminal breast cancer samples. Importantly, AF reduced TamR cell viability and disrupted TamR mammospheres while concomitantly reducing α6-integrin messenger RNA and protein levels. In addition, AF and small interfering RNA against α6-integrin blocked tamoxifen-stimulated proliferation of TamR MCF-7 cells and further sensitized these cells to tamoxifen. Moreover, AF reduced Src and Akt signaling activation in TamR MCF-7 cells. Our findings suggest elevated α6-integrin expression is associated with tamoxifen resistance and AF suppresses α6-integrin–Src–Akt signaling activation to confer activity against TamR breast cancer.  相似文献   

11.
Adult renal progenitor cells (ARPCs) isolated from the human kidney may contribute to repair featuring acute kidney injury (AKI). Bone morphogenetic proteins (BMPs) regulate differentiation, modeling, and regeneration processes in several tissues. The aim of this study was to evaluate the biological actions of BMP-2 in ARPCs in vitro and in vivo. BMP-2 was expressed in ARPCs of normal adult human kidneys, and it was upregulated in vivo after delayed graft function (DGF) of renal transplantation, a condition of AKI. ARPCs expressed BMP receptors, suggesting their potential responsiveness to BMP-2. Incubation of ARPCs with this growth factor enhanced reactive oxygen species (ROS) production, NADPH oxidase activity, and Nox4 protein expression. In vivo, Nox4 was localized in BMP-2-expressing CD133+ cells at the tubular level after DGF. BMP-2 incubation induced α-smooth muscle actin (SMA), collagen I, and fibronectin protein expression in ARPCs. Moreover, α-SMA colocalized with CD133 in vivo after DGF. The oxidative stimulus (H(2)O(2)) induced α-SMA expression in ARPCs, while the antioxidant N-acetyl-cysteine inhibited BMP-2-induced α-SMA expression. Nox4 silencing abolished BMP-2-induced NADPH oxidase activation and myofibroblastic induction. We showed that 1) ARPCs express BMP-2, 2) this expression is increased in a model of AKI; 3) BMP-2 may induce the commitment of ARPCs toward a myofibroblastic phenotype in vitro and in vivo; and 4) this profibrotic effect is mediated by Nox4 activation. Our findings suggest a novel mechanism linking AKI with progressive renal damage.  相似文献   

12.
Cancer/testis antigens (CTAs) are often aberrantly expressed in cancer stem cells (CSCs) which are responsible for tumor metastasis. Rec8 meiotic recombination protein (REC8), a member of CTAs, shares distinct roles in various cancers, while its contribution to CSCs and colorectal cancer (CRC) remains unclear. We found that overexpression of REC8 facilitated the migration and invasion of CRC cells (DLD-1 and SW480 cells) in vitro and promoted the liver metastasis of CRC in vivo. Moreover, REC8 is highly expressed in CRC stem-like cells and is required for the maintenance of CSC stemness. Mechanistic studies suggested that REC8 mediated through the activation of Bruton tyrosine kinase (BTK). Inhibition of BTK by ibrutinib not only suppressed the migration and invasion-promoting ability, but also declined the increased expression of p-BTK, p-Akt, β-catenin, and CSC markers upon REC8 overexpression. Importantly, high expression of REC8 in cancerous tissues was related to advanced clinical stage and lymph node metastasis of 62 CRC patients, and REC8 was enriched in the cancerous cells positive for CSC markers. Collectively, our results indicate that REC8 promotes CRC metastasis by increasing cell stemness through BTK/Akt/β-catenin pathway.  相似文献   

13.
14.
We investigated the role of profilin 2 in the stemness, migration, and invasion of HT29 cancer stem cells (CSCs). Increased and decreased levels of profilin 2 significantly enhanced and suppressed the self-renewal, migration, and invasion ability of HT29 CSCs, respectively. Moreover, profilin 2 directly regulated the expression of stemness markers (CD133, SOX2, and β-catenin) and epithelial mesenchymal transition (EMT) markers (E-cadherin and snail). CD133 and β-catenin were up-regulated by overexpression of profilin 2 and down-regulated by depletion of profilin 2. SOX2 was decreased by profilin 2 depletion. E-cadherin was not influenced by profilin 2- overexpression but increased by profilin 2- knockdown. The expression of snail was suppressed by profilin 2- knockdown. We speculated that stemness and the EMT are closely linked through profilin 2-related pathways. Therefore, this study indicates that profilin 2 affects the metastatic potential and stemness of colorectal CSCs by regulating EMT- and stemness-related proteins.  相似文献   

15.
The prognosis of metastatic cancer patients is still largely affected by treatment failure, mainly due to drug resistance. The hypothesis that chemotherapy might miss circulating tumour cells (CTCs) and particularly a subpopulation of more aggressive, stem‐like CTCs, characterized by multidrug resistance, has been recently raised. We investigated the prognostic value of drug resistance and stemness markers in CTCs from metastatic colorectal cancer patients treated with oxaliplatin (L‐OHP) and 5‐fluoruracil (5‐FU) based regimens. Forty patients with metastatic colorectal cancer were enrolled. CTCs were isolated from peripheral blood and analysed for the expression of aldheyde dehydrogenase 1 (ALDH1), CD44, CD133 (used as markers of stemness), multidrug resistance related protein 5 (MRP5 used as marker of resistance to 5‐FU and L‐OHP) and survivin (used as a marker of apoptosis resistance). CTCs were found in 27/40 (67%) patients. No correlation was found between the expression of either CD44 and CD133 in CTCs and the outcome of patients, while a statistically significant shorter progression‐free survival was found in patients with CTCs positive for the expression of ALDH1, survivin and MRP5. These results support the idea that isolating survivin and MRP5+ CTCs may help in the selection of metastatic colorectal cancer patients resistant to standard 5‐FU and L‐OHP based chemotherapy, for which alternative regimens may be appropriate.  相似文献   

16.
17.
The efficacy of hepatocellular carcinoma (HCC) treatment is very low because of the high percentage of recurrence and resistance to anticancer agents. Hepatic cancer stem cells (HCSCs) are considered the origin of such recurrence and resistance. Our aim was to evaluate the stemness of doxorubicin and 5-fluorouracil resistant hepatic cancer cells and establish the new method to isolate the HCSCs from primary cultured HCC tumors. HCC biopsies were used to establish primary cultures. Then, primary cells were selected for HCSCs by culture in medium supplemented with doxorubicin (0, 0.1, 0.25, 0.5 or 1 μg/mL), 5-fluorouracil (0, 0.1, 0.25, 0.5 or 1 μg/mL) or their combination. Selection was confirmed by detection of HCSC markers such as CD133, CD13, CD90, and the side population was identified by rhodamine 123 efflux. The cell population with the strongest expression of these markers was used to evaluate the cell cycle, gene expression profile, tumor sphere formation, marker protein expression, and in vivo tumorigenesis. Selective culture of primary cells in medium supplemented with 0.5 μg/mL doxorubicin and 1 μg/mL 5-fluorouracil selected cancer cells with the highest stemness properties. Selected cells strongly expressed CD13, CD133, CD90, and CD326, efflux rhodamine 123 and formed tumor spheres in suspension. Moreover, selected cells were induced to differentiate into cells with high expression of CD19 and AFP (alpha-fetoprotein), and importantly, could form tumors in NOD/SCID mice upon injection of 1 × 105 cells/mouse. Selective culture with doxorubicin and 5-fluorouracil will enrich HCSCs, is an easy method to obtain HCSCs that can be used to develop better therapeutic strategies for patients with HCC, and particularly HCSC-targeting therapy.  相似文献   

18.
Aberrant activation of Wnt/β-catenin signaling is common in most sporadic and inherited colorectal cancer (CRC) cells leading to elevated β-catenin/TCF transactivation. We previously identified the neural cell adhesion molecule L1 as a target gene of β-catenin/TCF in CRC cells. Forced expression of L1 confers increased cell motility, invasion, and tumorigenesis, and the induction of human CRC cell metastasis to the liver. In human CRC tissue, L1 is exclusively localized at the invasive front of such tumors in a subpopulation of cells displaying nuclear β-catenin. We determined whether L1 expression confers metastatic capacities by inducing an epithelial to mesenchymal transition (EMT) and whether L1 cosegregates with cancer stem cell (CSC) markers. We found that changes in L1 levels do not affect the organization or expression of E-cadherin in cell lines, or in invading CRC tissue cells, and no changes in other epithelial or mesenchymal markers were detected after L1 transfection. The introduction of major EMT regulators (Slug and Twist) into CRC cell lines reduced the levels of E-cadherin and induced fibronectin and vimentin, but unlike L1, Slug and Twist expression was insufficient for conferring metastasis. In CRC cells L1 did not specifically cosegregate with CSC markers including CD133, CD44, and EpCAM. L1-mediated metastasis required NF-κB signaling in cells harboring either high or low levels of endogenous E-cadherin. The results suggest that L1-mediated metastasis of CRC cells does not require changes in EMT and CSC markers and operates by activating NF-κβ signaling.  相似文献   

19.
Gamma-Aminobutyric Acid Type B Receptor (GABABR) plays essential roles in tumor progression. However, the function of GABABR in colorectal cancer (CRC) needs further clarification. As the main part of GABABR, GABABR1 expression was identified significantly lower in tumor tissues than those in non-tumor normal tissues and that CRC patients with high GABABR1 expression lived longer. Further studies indicated that knockdown of GABABR1 elevated CRC cell proliferation, migration, and invasion. Furthermore, knockdown of GABABR1 activated the expression of the epithelial-mesenchymal transition (EMT)-related proteins N-cadherin and Vimentin, whereas decrease the protein level of E-cadherin. In addition, activation of Hippo/YAP1 signaling contributes to the GABABR1 down-regulation promoted proliferation, migration, invasion and EMT in CRC cells. At last, we verified the contribution of Hippo/YAP1 signaling in the GABABR1 down-regulation impaired biological phenotype of colon cancer cells in vivo. In summary, these data indicate that GABABR1 impairs the migration and invasion of CRC cells by inhibiting EMT and the Hippo/YAP1 pathway, suggesting that GABABR1 could be a potential therapeutic target for CRC.  相似文献   

20.
Gastrin-releasing peptide (GRP) and its receptor (GRPR) act as morphogens when expressed in colorectal cancer (CRC), promoting the assumption of a better differentiated phenotype by regulating cell motility in the context of remodeling and retarding tumor cell metastasis by enhancing cell-matrix attachment. Although we have shown that these processes are mediated by focal adhesion kinase (FAK), the downstream target(s) of GRP-induced FAK activation are not known. Since osteoblast differentiation is mediated by FAK-initiated upregulation of ICAM-1 (Nakayamada S, Okada Y, Saito K, Tamura M, Tanaka Y. J Biol Chem 278: 45368-45374, 2003), we determined whether GRP-induced activation of FAK alters ICAM-1 expression in CRC and, if so, determined the contribution of ICAM-1 to mediating GRP's morphogenic properties. Caco-2 and HT-29 cells variably express GRP/GRPR. These cells only express ICAM-1 when GRPR are present. In human CRC, GRPR and ICAM-1 are only expressed by better differentiated tumor cells, with ICAM-1 located at the basolateral membrane. ICAM-1 expression was only observed subsequent to GRPR signaling via FAK. To study the effect of ICAM-1 expression on tumor cell motility, CRC cells expressing GRP, GRPR, and ICAM-1 were cultured in the presence and absence of GRPR antagonist or monoclonal antibody to ICAM-1. CRC cells engaged in directed motility in the context of remodeling and were highly adherent to the extracellular matrix, only in the absence of antagonist or ICAM-1 antibody. These data indicate that GRP upregulation of ICAM-1 via FAK promotes tumor cell motility and attachment to the extracellular matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号