首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In type 2 diabetes mellitus (T2DM) and its related disorders like obesity, the abnormal protein processing, oxidative stress and proinflammatory cytokines will drive the activation of inflammatory pathways, leading to low-grade chronic inflammation and insulin resistance (IR) in the periphery and impaired neuronal insulin signaling in the brain. Studies have shown that such inflammation and impaired insulin signaling contribute to the development of Alzheimer''s disease (AD). Therefore, new therapeutic strategies are needed for the treatment of T2DM and T2DM-linked AD. Melatonin is primarily known for its circadian role which conveys message of darkness and induces night-state physiological functions. Besides rhythm-related effects, melatonin has anti-inflammatory and antioxidant properties. Melatonin levels are downregulated in metabolic disorders with IR, and activation of melatonin signaling delays disease progression. The aim of this Review is to highlight the therapeutic potentials of melatonin in preventing the acceleration of AD in T2DM individuals through its therapeutic mechanisms, including antioxidative effects, anti-inflammatory effects, restoring mitochondrial function and insulin sensitivity.  相似文献   

2.
Overactivation of glutamate receptors results in neurodegeneration in a variety of brain pathologies, including ischemia, epilepsy, traumatic brain injury and slow-progressing neurodegenerative disorders. In all these pathologies, it is well accepted that the calcium-dependent cysteine proteases calpains are key players in the mechanisms of neuronal cell death. Many research groups have been actively pursuing to establish a link between the deregulation of intracellular Ca2+ homeostasis associated with excitotoxicity and calpain activity. It is well established that these two events are connected and interact synergistically to promote neurodegeneration, but whether calpain activity depends on or contributes to Ca2+ deregulation is still under debate.  相似文献   

3.
Toll-like receptors (TLRs) are crucial activators of inflammatory responses, they are considered immune receptors. TLRs are of fundamental importance in the pathophysiology of disorders related to inflammation including neurodegenerative diseases and cancer. Melatonin is a beneficial agent in the treatment of inflammatory and immune disorders. Melatonin is potent anti-inflammatory hormone that regulates various molecular pathways. Withal, limited studies have evaluated the inhibitory role of melatonin on TLRs. This review summarizes the current knowledge related to the effects of melatonin on TLRs in some common inflammatory and immunity disorders.  相似文献   

4.
5.
6.
Excitotoxicity is one of the most extensively studied processes of neuronal cell death, and plays an important role in many central nervous system (CNS) diseases, including CNS ischemia, trauma, and neurodegenerative disorders. First described by Olney, excitotoxicity was later characterized as an excessive synaptic release of glutamate, which in turn activates postsynaptic glutamate receptors. While almost every glutamate receptor subtype has been implicated in mediating excitotoxic cell death, it is generally accepted that the N-methyl-D-aspartate (NMDA) subtypes play a major role, mainly owing to their high calcium (Ca2+) permeability. However, other glutamate receptor subtypes such as 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) propionate (AMPA) or kainate receptors have also been attributed a critical role in mediating excitotoxic neuronal cell death. Although the molecular basis of glutamate toxicity is uncertain, there is general agreement that it is in large part Ca2+-dependent. The present review is aimed at summarizing the molecular mechanisms of NMDA receptor and AMPA/kainate receptor-mediated excitotoxic neuronal cell death.  相似文献   

7.
The goal of this study was to evaluate the potential involvement of melatonin in the activation of the nuclear factor erythroid 2-related factor 2 and antioxidant-responsive element (Nrf2–ARE) signaling pathway and the modulation of antioxidant enzyme activity in an experimental model of traumatic brain injury (TBI). In experiment 1, ICR mice were divided into four groups: sham group, TBI group, TBI + vehicle group, and TBI + melatonin group (n = 38 per group). Melatonin (10 mg/kg) was administered via an intraperitoneal (ip) injection at 0, 1, 2, 3, and 4 h post-TBI. In experiment 2, Nrf2 wild-type (Nrf2+/+ group) and Nrf2-knockout (Nrf2−/− group) mice received a TBI insult followed by melatonin administration (10 mg/kg, ip) at the corresponding time points (n = 35 per group). The administration of melatonin after TBI significantly ameliorated the effects of the brain injury, such as oxidative stress, brain edema, and cortical neuronal degeneration. Melatonin markedly promoted the translocation of Nrf2 protein from the cytoplasm to the nucleus; increased the expression of Nrf2–ARE pathway-related downstream factors, including heme oxygenase-1 and NAD(P)H:quinone oxidoreductase 1; and prevented the decline of antioxidant enzyme activities, including superoxide dismutase and glutathione peroxidase. Furthermore, knockout of Nrf2 partly reversed the neuroprotection of melatonin after TBI. In conclusion, melatonin administration may increase the activity of antioxidant enzymes and attenuate brain injury in a TBI model, potentially via mediation of the Nrf2–ARE pathway.  相似文献   

8.
Oxidative stress and down-regulated trophic factors are involved in the pathogenesis of nigrostriatal dopamine(DA)rgic neurodegeneration in Parkinson's disease. Fibroblast growth factor 9 (FGF9) is a survival factor for various cell types; however, the effect of FGF9 on DA neurons has not been studied. The antioxidant melatonin protects DA neurons against neurotoxicity. We used MPP+ to induce neuron death in vivo and in vitro and investigated the involvement of FGF9 in MPP+ intoxication and melatonin protection. We found that MPP+ in a dose- and time-dependent manner inhibited FGF9 mRNA and protein expression, and caused death in primary cortical neurons. Treating neurons in the substantia nigra and mesencephalic cell cultures with FGF9 protein inhibited the MPP+-induced cell death of DA neurons. Melatonin co-treatment attenuated MPP+-induced FGF9 down-regulation and DA neuronal apoptosis in vivo and in vitro . Co-treating DA neurons with melatonin and FGF9-neutralizing antibody prevented the protective effect of melatonin. In the absence of MPP+, the treatment of FGF9-neutralizing antibody-induced DA neuronal apoptosis whereas FGF9 protein reduced it indicating that endogenous FGF9 is a survival factor for DA neurons. We conclude that MPP+ down-regulates FGF9 expression to cause DA neuron death and that the prevention of FGF9 down-regulation is involved in melatonin-provided neuroprotection.  相似文献   

9.
Neural stem cells (NSCs) are immature precursors of the central nervous system (CNS), with self‐renewal and multipotential differentiation abilities. Their proliferation and differentiation are dynamically regulated by hormonal and local factors. Alteration in neurogenesis is associated with many neurological disorders. Increasing evidence suggests that modulation of NSCs can be a promising therapeutic approach for neural injury and neurodegenerative disorders. Melatonin, a pineal gland‐derived hormone, regulates the neuroimmuno‐endocrine axis and is functionally important to the circadian rhythm, tumour suppression and immunity. In the CNS, melatonin exerts neuroprotective effects in many diseases, such as Parkinson's disease, Alzheimer's disease and ischaemic brain injury. Emerging evidence suggests that it might also mediate such protective action by influencing proliferation and differentiation of NSCs. In this article, we review the current literature concerned with effects of melatonin on NSCs in different physiological and pathological conditions.  相似文献   

10.
Li  Yuanlong  Guo  Yue  Fan  Yue  Tian  He  Li  Kuo  Mei  Xifan 《Neurochemical research》2019,44(8):2007-2019
Neurochemical Research - Spinal cord injury (SCI) leads to neuronal death resulting in central nervous system (CNS) dysfunction; however, the pathogenesis is still poorly understood. Melatonin...  相似文献   

11.
Melatonin is well-documented to have the ability of reducing nerve inflammation and scavenging free radicals. However, the therapeutic effect of melatonin on spinal cord injury has not been fully described. In this study, we assessed the effect of melatonin on T9 spinal cord injury established by Allen method in rats. Melatonin deficiency significantly delayed the recovery of sensory and motor functions in SCI rats. Treatment with melatonin significantly alleviated neuronal apoptosis and accelerated the recovery of spinal cord function. These results suggest that melatonin is effective to ameliorate spinal cord injury through inhibition of neuronal apoptosis and promotion of neuronal repair.  相似文献   

12.
Free radicals and other reactive species are involved in normal ovarian physiology. However, they are also highly reactive with complex cellular molecules (proteins, lipids, and DNA) and alter their functions leading to oxidative stress. Oxidative damage may play a prominent role in the development of disorders that considerably influence female fertility. Melatonin, because of its amphiphilic nature that allows for crossing morphophysiological barriers, is an effective antioxidant for protecting macromolecules against oxidative stress caused by reactive species. The balance between reactive oxygen species and antioxidants within the follicle seems to be critical to the function of the oocyte and granulosa cells and evidence has accumulated showing that melatonin is involved in the protection of these cells. Melatonin appears to have varied functions at different stages of follicle development, oocyte maturation, and luteal stage. Melatonin concentration in the growing follicle may be an important factor in avoiding atresia, because melatonin in the follicular fluid reduces apoptosis of critical cells. Melatonin also has protective actions during oocyte maturation reducing intrafollicular oxidative damage. An association between melatonin concentrations in follicular fluid and oocyte quality has been reported; this would allow a preovulatory follicle to fully develop and provide a competent oocyte for fertilization. The functional role of reactive species and the cytoprotective properties of melatonin on the ovary from oxidative damage are summarized in this brief review.  相似文献   

13.
Altered diurnal secretory patterns, i.e. altered phase and/or amplitude of melatonin have been reported in sleep and affective disorders. The alteration may depend on environmental factors which in vulnerable individuals may cause sleep and/or affective disorders. Early stress in conjunction with development of resistance to corticotropin-releasing hormone may be linked to the low melatonin syndrome in subgroups of depressed patients. Also the seasonal variation in melatonin as well as serotonin may be linked to the seasonal pattern seen in subgroups of affective disorders. Melatonin may be used as a combined marker for proneness to develop affective disorders especially in latent carriers of bipolar disorders.  相似文献   

14.
Pancreatic cancer has a high mortality rate due to the absence of early symptoms and subsequent late diagnosis; additionally, pancreatic cancer has a high resistance to radio- and chemotherapy. Multiple inflammatory pathways are involved in the pathophysiology of pancreatic cancer. Melatonin an indoleamine produced in the pineal gland mediated and receptor-independent action is the pancreas and other where has both receptors. Melatonin is a potent antioxidant and tissue protector against inflammation and oxidative stress. In vivo and in vitro studies have shown that melatonin supplementation is an appropriate therapeutic approach for pancreatic cancer. Melatonin may be an effective apoptosis inducer in cancer cells through regulation of a large number of molecular pathways including oxidative stress, heat shock proteins, and vascular endothelial growth factor. Limited clinical studies, however, have evaluated the role of melatonin in pancreatic cancer. This review summarizes what is known regarding the effects of melatonin on pancreatic cancer and the mechanisms involved.  相似文献   

15.
Melatonin oxidative stress and neurodegenerative diseases   总被引:3,自引:0,他引:3  
Oxidative Stress is implicated as one of the primary factors that contribute to the development of neurodegenerative diseases like Alzheimer's Disease, Parkinsonism and neurological conditions like epileptic seizures, stroke, brain damage, neurotrauma etc. The increased formation and release of oxygen free radicals coupled with the rather low antioxidative potential of the central nervous system are the major reasons that account for the enhanced oxidative stress seen in neuronal cells. In addition to this, brain is also enriched with polyunsaturated fatty acids that render neuronal cells easily vulnerable to oxidative attack. The fact that there is increased incidence of neurodegenerative disorders in aged individuals, has prompted many investigators to search for a common factor whose progressive decline with increase in age could account for increased oxidative stress resulting in senescence and age associated degenerative diseases. Since melatonin, the hormone secreted from the pineal gland has a remarkable anti-oxidant property and whose rate of production declines with increase in age, has prompted many to suggest that this hormone plays a crucial role in the genesis of neurodegenerative diseases. Melatonin cannot only scavenges oxygen free radicals like super oxide radical (O2-), hydroxyl radical (*OH), peroxyl radical (LOO*) and peroxynitrite anion (ONOO-), but can also enhance the antioxidative potential of the cell by stimulating the synthesis of antioxidative enzymes like super oxide dismutase (SOD), glutathione peroxidase (GPX), and also the enzymes that are involved in the synthesis of glutathione. In many instances, melatonin increases the expression of m RNA's of the antioxidative enzymes. Melatonin administration has been shown to be effective in counteracting the neurodegenerative conditions both in experimental models of neurodegenerative diseases and in patients suffering from such diseases. A disturbance of melatonin rhythm and secretion also has been noted in patients suffering from certain neurodegenerative diseases. From all these, it is evident that melatonin has a neuroprotective role.  相似文献   

16.
研究了褪黑激素对烟草(Nicotiana tabacum)悬浮细胞在低温胁迫下精氨酸脱羧酶活性及细胞生存率的影响。发现褪黑激素可以明显提高低温胁迫下烟草悬浮细胞精氨酸脱羧酶的活性, 并明显提高细胞的生存率。表明褪黑激素可能在低温条件下通过调节植物细胞内多胺的合成而提高抵御冷害的能力。  相似文献   

17.
研究了褪黑激素对烟草(Nicotiana tabacum)悬浮细胞在低温胁迫下精氨酸脱羧酶活性及细胞生存率的影响.发现褪黑激素可以明显提高低温胁迫下烟草悬浮细胞精氨酸脱羧酶的活性,并明显提高细胞的生存率.表明褪黑激素可能在低温条件下通过调节植物细胞内多胺的合成而提高抵御冷害的能力.  相似文献   

18.
19.
The gastrointestinal tract (GIT) is a major source of extrapineal melatonin. In some animals, tissue concentrations of melatonin in the GIT surpass blood levels by 10-100 times and the digestive tract contributes significantly to melatonin concentrations in the peripheral blood, particularly during the day. Some melatonin found in the GIT may originate from the pineal gland, as the organs of the digestive system contain binding sites, which in some species exhibit circadian variation. Unlike the production of pineal melatonin, which is under the photoperiodic control, release of GI melatonin seems to be related to periodicity of food intake. Melatonin and melatonin binding sites were localized in all GI tissues of mammalian and avian embryos. Postnatally, melatonin was localized in the GIT of newborn mice and rats. Phylogenetically, melatonin and melatonin binding sites were detected in GIT of numerous mammals, birds and lower vertebrates. Melatonin is probably produced in the serotonin-rich enterochromaffin cells (EC) of the GI mucosa and can be released into the portal vein postprandially. In addition, melatonin can act as an autocrine or a paracrine hormone affecting the function of GI epithelium, lymphatic tissues of the immune system and the smooth muscles of the digestive tube. Finally, melatonin may act as a luminal hormone, synchronizing the sequential digestive processes. Higher peripheral and tissue levels of melatonin were observed not only after food intake but also after a long-term food deprivation. Such melatonin release may have a direct effect on the various GI tissues but may also act indirectly via the CNS; such action might be mediated by sympathetic or parasympathetic nerves. Melatonin can protect GI mucosa from ulceration by its antioxidant action, stimulation of the immune system and by fostering microcirculation and epithelial regeneration. Melatonin may reduce the secretion of pepsin and the hydrochloric acid and influence the activity of the myoelectric complexes of the gut via its action in the CNS. Tissue or blood levels of melatonin may serve as a marker of GI lesions or tumors. Clinically, melatonin has a potential for a prevention or treatment of colorectal cancer, ulcerative colitis, irritable bowel syndrome, children colic and diarrhea.  相似文献   

20.
Melatonin has the ability to improve plant growth and strengthened plant tolerance to environmental stresses; however, the effects of melatonin on mitochondrial respiration in plants and the underlying biochemical and molecular mechanisms are still unclear. The objective of the study is to determine possible effects of melatonin on mitochondrial respiration and energy efficiency in maize leaves grown under optimum temperature and cold stress and to reveal the relationship between melatonin-induced possible alterations in mitochondrial respiration and cold tolerance. Melatonin and cold stress, alone and in combination, caused significant increases in activities and gene expressions of pyruvate dehydrogenase, citrate synthase, and malate dehydrogenase, indicating an acceleration in the rate of tricarboxylic acid cycle. Total mitochondrial respiration rate, cytochrome pathway rate, and alternative respiration rate were increased by the application of melatonin and/or cold stress. Similarly, gene expression and protein levels of cytochrome oxidase and alternative oxidase were also enhanced by melatonin and/or cold stress. The highest values for all these parameters were obtained from the seedlings treated with the combined application of melatonin and cold stress. The activity and gene expression of ATP synthase and ATP concentration were augmented by melatonin under control and cold stress. On the other hand, cold stress reduced markedly plant growth parameters, including root length, plant height, leaf surface area, and chlorophyll content and increased the content of reactive oxygen species (ROS), including superoxide anion and hydrogen peroxide and oxidative damage, including malondialdehyde content and electrolyte leakage level; however, melatonin significantly promoted the plant growth parameters and reduced ROS content and oxidative damage under control and cold stress. These data revealed that melatonin-induced growth promotion and cold tolerance in maize is associated with its modulating effect on mitochondrial respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号