首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temozolomide (TMZ) is the internationally recognized and preferred drug for glioma chemotherapy treatment. However, TMZ resistance in glioma appears after long-term use and is an urgent problem that needs to be solved. Circular RNAs (circRNAs) are noncoding RNAs and play an important role in the pathogenesis and progression of tumors. Hsa_circ_0110757 was identified in TMZ-resistant glioma cells by high-throughput sequencing analysis and was derived from reverse splicing of myeloid cell leukemia-1 (Mcl-1) exons. The role of hsa_circ_0110757 in TMZ-resistant glioma was evaluated both in vitro and in vivo. It was found that hsa_circ_0110757 and ITGA1 are more highly expressed in TMZ-resistant glioma than in TMZ-sensitive glioma. The overexpression of hsa_circ_0110757 in glioma patients treated with TMZ was obviously associated with tumor invasion. This study indicates that hsa_circ_0110757 inhibits glioma cell apoptosis by sponging hsa-miR-1298-5p to promote ITGA1 expression. Thus, hsa_circ_0110757/hsa-miR-1298-5p/ITGA could be a potential therapeutic target for reversing the resistance of glioma to TMZ.Subject terms: Chemotherapy, Tumour-suppressor proteins  相似文献   

2.
The function of circular RNAs (circRNAs) in gliomas is as yet unknown. The present study explored role of hsa_circ_0076931 in glioma. circRNA expression profiles were identified via RNA-seq followed by qRT-PCR validation in three pairs of glioma and normal brain tissues (NBT). The function of hsa_circ_0076931 was investigated in vitro using cell lines as well as in vivo using a xenograft tumor. Hsa_circ_0076931 was up-regulated by overexpression and an mRNA profile compared with wild-type was identified by RNA-seq. The relationship between miR-6760-3p and hsa_circ_0076931 or CCBE1 was confirmed via luciferase reporter or AGO2-RIP assays. A total of 507 circRNAs were identified in glioma tissues that were differentially expressed compared with that in NBT, and the sequencing data were deposited in BioProject (ID: PRJNA746438). Hsa_circ_0007694 and hsa_circ_0008016 were memorably increased whereas hsa_circ_0076931 and hsa_circ_0076948 decreased in glioma compared with those in NBT. Additionally, hsa_circ_0076931 expression was negatively correlated with histological grade. Overexpression of hsa_circ_0076931 inhibited proliferation, migration, and invasion while promoting apoptosis of glioma cells. A total of 4383 and 537 aberrantly expressed genes were identified between the hsa_circ_0076931-overexpressed and control groups in H4 and U118-MG cells, respectively; the sequencing data were deposited in BioProject (ID: PRJNA746438). These differentially expressed genes were mainly enriched in cancer-related pathways. In addition, elevated hsa_circ_0076931 levels induced the expression of CCBE1 while suppressing miR-6760-3p expression. miR-6760-3p can bind to hsa_circ_0076931. The experimental evidence supports using hsa_circ_0076931 as a marker for glioma and to help prevent malignant progression. The mechanism might be relevant to miR-6760-3p and CCBE1.  相似文献   

3.
Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. Currently, an increasing evidence showed that circular RNAs (circRNAs) play important roles in tumor progression. However, the effects and underlying mechanisms of circRNAs in CRC progression remain unclear. In the present study, through circRNA high-throughput sequencing and quantitative real-time polymerase chain reaction, we identified that hsa_circ_0136666 was significantly overexpressed in CRC tissues and cell lines. High hsa_circ_0136666 expression was associated with poor overall survival of patients with CRC. In vitro function assays showed that hsa_circ_0136666 inhibition suppressed CRC cell proliferation, migration, invasion, and arrested CRC cells in the G0/G1 phase. Furthermore, we showed that hsa_circ_0136666 inhibition reduced CRC cell growth in vivo. Mechanistically, we revealed that hsa_circ_0136666 could increase SH2B1 expression via competitively binding miR-136 in CRC cells. In addition, SH2B1 overexpression could reverse the effects of hsa_circ_0136666 inhibition on CRC cell progression. In conclusion, our data suggested that hsa_circ_0136666 could promote CRC cell progression via the miR-136/SH2B1 axis, elucidating a novel approach to improve the effectiveness of CRC treatment.  相似文献   

4.
5.
Colorectal cancer (CRC), a kind of human gastrointestinal cancer, has been reported to be one of the most common malignant tumors worldwide. Increasing evidence has indicated that circular RNAs exert significant effects on the development of multiple cancers. Nevertheless, whether hsa_circ_0053277 regulates the progression of CRC remains to be explored. In this study, our results showed that the expression of hsa_circ_0053277 was markedly upregulated in CRC tissues and cells. Knockdown of hsa_circ_0053277 inhibited cell proliferation, migration, and epithelial-mesenchymal transition (EMT) process in CRC. miR-2467-3p had a binding site for hsa_circ_0053277. Molecular mechanism assays confirmed that hsa_circ_0053277 could bind with miR-2467-3p. In addition, hsa_circ_0053277 accelerated cell proliferation rate by acting as a sponge for miR-2467-3p in CRC. Matrix metalloproteinase 14 (MMP14) expression was notably upregulated in CRC cells and MMP14 was a downstream target gene of miR-2467-3p. Besides, hsa_circ_0053277 positively regulated MMP14 expression while miR-2467-3p negatively regulated MMP14 expression. Rescue assays verified that MMP14 knockdown countervailed the function of miR-2467-3p inhibitor on cell proliferation, migration, and EMT process in CRC. To sum up, hsa_circ_0053277 facilitated the development of CRC by sponging miR-2467-3p to upregulate MMP14 expression.  相似文献   

6.
Ovarian cancer is the leading cause of gynecological cancer-related death in women, and is difficult to treat. The aim of our study is to explore the role and action mechanism of hsa_circ_0000119 in ovarian cancer, thus to analyze whether the circular RNA is a potential target for the treatment of the disease. In this present study, our data shows that hsa_circ_0000119 and DNA methyltransferase 1 (DNMT1) was increased, while miR-142-5p was decreased in ovarian cancer. Overexpression of hsa_circ_0000119 promoted tumor growth, while silencing of hsa_circ_0000119 resulted in an opposite effects. Decreasing of hsa_circ_0000119 also notably inhibited the proliferation, migration, and invasion of the ovarian cancer cells. Moreover, the data proves that hsa_circ_0000119 negatively regulated miR-142-5p and cadherin 13 (CDH13) expression, but positively regulated DNMT1 expression. miR-142-5p could interact with hsa_circ_0000119 and DNMT1 3′-UTR. Silencing of DNMT1 could reverse the inhibition of hsa_circ_0000119 to miR-142-5p and CDH13 expression. Importantly, higher level of CDH13 promoter methylation existed in the ovarian tumors than that in matched normal tissues. DNA methyltransferase inhibitor could increase the expression of CDH13 in ovarian cancer cells. In addition, our results also prove that increasing of CDH13 or miR-142-5p effectively reversed the inhibition of hsa _circ_0000119 to the cell malignant phenotypes. Overall, our data demonstrate that hsa_circ_0000119 facilitated ovarian cancer development through increasing CDH13 expression via promoting DNMT1 expression by sponging miR-142-5p. Our data demonstrate the potential role of hsa_circ_0000119 in the treatment of ovarian cancer.  相似文献   

7.
8.
More and more documents have proved that the abnormal expression of long noncoding RNAs (lncRNAs) are correlated with the initiation and progression of colorectal cancer (CRC). lncRNA FOXD3-AS1 has been reported in glioma for its oncogenic property. According to the survival analysis of The Cancer Genome Atlas database, FOXD3-AS1 upregulation implied lower survival rate of patients with CRC. Quantitative real-time polymerase chain reaction showed the overexpression of FOXD3-AS1 in both CRC tissues and cells. The Kaplan–Meier method demonstrated the prognostic value of FOXD3-AS1 for patients with CRC. To explore the effect of FOXD3-AS1 on CRC progression, loss-of-function experiments were carried out, whose results indicated that knockdown of FOXD3-AS1 suppressed cell proliferation, migration, and invasion, inhibited cell cycle and promoted cell apoptosis in vitro. In vivo experiments affirmed that FOXD3-AS1 affected tumor growth. FOXD3-AS1 expression was enriched in the cytoplasm of CRC cells. Mechanism experiments revealed that FOXD3-AS1 served as a competing endogenous RNA to upregulate SIRT1 by sponging miR-135a-5p. In addition, SIRT1 silencing also restrained cell proliferation and motility. Rescue assays revealed the biological function of FOXD3-AS1/miR-135a-5p/SIRT1 axis in CRC progression. In conclusion, FOXD3-AS1 promotes CRC progression by regulating miR-135a-5p/SIRT1 axis, shedding lights on the way to CRC treatments.  相似文献   

9.
Circular RNAs (circRNAs) can participate in multiple cancers, including breast cancer. Increasing circRNAs are recognized in various cancers because of the high-throughput sequencing. However, the potential physiological effect of hsa_circ_0136666 in breast cancer progression is unknown. In our study, the biological role of hsa_circ_0136666 in breast cancer development was studied. It was displayed that hsa_circ_0136666 was greatly increased in breast cancer. In addition, overexpression of hsa_circ_0136666 was able to promote Michigan Cancer Foundation-7 (MCF7) and BT474 cell proliferation and triggered cell cycle in G2/M phase. microRNA plays critical role in tumor development and they can act as direct targets of circRNAs. miR-1299 has been implicated as a famous tumor suppressor in many cancers. Here, miR-1299 was predicted as the target of hsa_circ_0136666. Meanwhile, its Upregulation repressed breast cancer proliferation, migration and invasion capacity, which could be reversed by the increase of hsa_circ_0136666. Furthermore, Cyclin-dependent kinase 6 (CDK6) was speculated as the downstream target of miR-1299. In MCF7 and BT474 cells, CDK6 was greatly overexpressed and it was shown that CDK6 contributed a lot to breast cancer progression. Subsequently, it was implied that hsa_circ_0136666 could modulate CDK6 levels positively in vitro. In conclusion, it was revealed that Upregulation of hsa_circ_0136666 promoted breast cancer progression by sponging miR-1299 and targeting CDK6.  相似文献   

10.
Increasing studies have found that circular RNAs (circRNAs) are aberrantly expressed and play important roles in the occurrence and development of human cancers. However, the function of circRNAs on environmental carcinogen-induced gastric cancer (GC) progression remains poorly elucidated. In the present study, hsa_circ_0110389 was identified as a novel upregulated circRNA in malignant-transformed GC cells through RNA-seq, and subsequent quantitative real-time PCR verified that hsa_circ_0110389 was significantly increased in GC tissues and cells. High hsa_circ_0110389 expression associates with advanced stages of GC and predicts poor prognosis. Knockdown and overexpression assays demonstrated that hsa_circ_0110389 regulates proliferation, migration, and invasion of GC cells in vitro. In addition, hsa_circ_0110389 was identified to sponge both miR-127-5p and miR-136-5p and SORT1 was validated as a direct target of miR-127-5p and miR-136-5p through multiple mechanism assays; moreover, hsa_circ_0110389 sponged miR-127-5p/miR-136-5p to upregulate SORT1 expression and hsa_circ_0110389 promoted GC progression through the miR-127-5p/miR-136-5p–SORT1 pathway. Finally, hsa_circ_0110389 knockdown suppressed GC growth in vivo. Taken together, our findings firstly identify the role of hsa_circ_0110389 in GC progression, which is through miR-127-5p/miR-136-5p–SORT1 pathway, and our study provides novel insight for the identification of diagnostic/prognostic biomarkers and therapeutic targets for GC.Subject terms: Gastrointestinal cancer, Non-coding RNAs  相似文献   

11.
The relationship between circular RNA (circRNA) and cancer stem cells (CSCs) is uncertain. We have investigated the combined influence of CSCs, circRNA (hsa_circ_0003222), and immune checkpoint inhibitors in NSCLC progression and therapy resistance. We constructed lung CSCs (LCSCs; PC9 and A549). The effects of hsa_circ_0003222 in vitro were determined by cell counting, colony and sphere formation, and Transwell assays. A tumor xenograft model of metastasis and orthotopic model were built for in vivo analysis. We found that hsa_circ_0003222 was highly expressed in NSCLC tissues and LCSCs. Higher levels of hsa_circ_0003222 were associated with the stage, metastasis, and survival rate of patients with NSCLC. Reduced levels of hsa_circ_0003222 decreased tumor cell proliferation, migration, invasion, stemness-like properties, and chemoresistance. The silencing of hsa_circ_0003222 was found to downregulate PHF21B expression and its downstream, β-catenin by relieving the sponging effect of miR-527. Moreover, silencing hsa_circ_0003222 alleviated NSCLC resistance to anti-programmed cell death-ligand 1 (PD-L1)-based therapy in vivo. Our data demonstrate the significant role of hsa_circ_0003222 in NSCLC cell stemness-like properties. The manipulation of circRNAs in combination with anti-PD-L1 therapy may alleviate NSCLC stemness and progression.Subject terms: Cancer microenvironment, Cancer stem cells  相似文献   

12.
Circular RNAs (circRNAs) is one type of important non-coding RNAs that participate in tumorigenesis and cancer progression. In our previous study, we performed a microarray analysis of circRNAs between the tumor tissues and the adjacent normal tissues of hepatocellular carcinoma (HCC) patients, and found that the circRNA hsa_circ_0007456 is significantly downregulated in the tumor tissues and correlated with the prognosis of HCC. We further investigated the relationship between the expression levels of hsa_circ_0007456 in HCC and the susceptibility of NK cells, and found that the expression levels of hsa_circ_0007456 in HCC cell lines significantly influenced their susceptibility to NK cells. Through a series of screening and validation, we found that hsa_circ_0007456 mainly functioned through sponging miR-6852-3p and regulating the expression of intercellular adhesion molecule-1 (ICAM-1) in HCC. The miR-6852-3p/ICAM-1 axis is essential for the NK cytotoxicity toward HCC mediated by hsa_circ_0007456. In conclusion, we identify here hsa_circ_0007456 as a promising biomarker of HCC, and highlight hsa_circ_0007456/miR-6852-3p/ICAM-1 axis as an important signaling pathway in the process of tumor immune evasion and the tumorigenesis of HCC.Subject terms: Tumour biomarkers, Liver cancer  相似文献   

13.
Bladder cancer (BC) is known as a common and lethal urinary malignancy worldwide. Circular RNAs (circRNAs), an emerging non-coding RNA, participate in carcinogenesis process of several cancers including BC. In this study, high-throughput sequencing and RT-qPCR were applied to discover and validate abnormal high expression of circUBE2K in BC tissues. Fluorescence in situ hybridization (FISH) was used to detect hsa_circ_0009154 (circUBE2K) expression and subcellular localization in BC tissues. High circUBE2K predicted unfavorable prognoses in BCs, as well as correlated with clinical features. CCK8, transwell, EdU and wound healing assays demonstrated down-regulating circUBE2K decreased BC cell phenotype as proliferation, invasion, and migration, respectively. Further studies showed that circUBE2K promoted BC progression via sponging miR-516b-5p and enhancing ARHGAP5 expression through regulating RhoA activity. Dual-luciferase reporter, FISH and RNA pulldown assays were employed to verify the relationships among circUBE2K/miR-516b-5p/ARHGAP5/RhoA axis. Down-regulating miR-516b-5p or overexpressing ARHGAP5 restored RhoA activity mediated BC cell properties after silencing circUBE2K. Subcutaneous xenograft and metastasis model identified circUBE2K significantly increased BC cell metastasis and proliferation in-vivo. Taken together, we found that circUBE2K is a tumor-promoting circRNA in BC that functions as a ceRNA to regulate ARHGAP5 expression via sponging miR-516b-5p.Subject terms: Non-coding RNAs, Bladder cancer  相似文献   

14.
Circular RNAs (circRNAs) were recently reported to be involved in the pathogenesis of Non-small cell lung cancer (NSCLC), however, the molecular mechanisms of circRNAs in cell proliferation, invasion and TKI drug resistance remain largely undetermined. Here, we identified hsa_circ_0004015 was upregulated in NSCLC tissues, and was associated with the poor overall survival rate of NSCLC patients. Knockdown of hsa_circ_0004015 significantly decreased cell viability, proliferation, and invasion, whereas overexpression exhibited opposed effects in vivo and in vitro. Furthermore, hsa_circ_0004015 could enhance the resistance of HCC827 to gefitinib. In mechanism, hsa_circ_0004015 acted as a sponge for miR-1183, and PDPK1 was revealed to be target gene of miR-1183. Subsequently, functional assays illustrated that the oncogenic effects of hsa_circ_0004015 was attributed to the regulation of miR-1183/PDPK1 axis. In conclusion, circ_0016760/miR-1183/PDPK1 signaling pathway might play vital roles in the tumorigenesis of NSCLC.  相似文献   

15.
The prognosis for human glioma, a malignant tumor of the central nervous system, is poor due to its rapid growth, genetic heterogeneity, and inadequate understanding of its underlying molecular mechanisms. Circular RNAs composed of exonic sequences, represent an understudied form of noncoding RNAs (ncRNAs) that was discovered more than a decade ago, function as microRNA sponges. We aimed to assess the relationship between circ-U2AF1 (CircRNA ID: hsa_circ_0061868) and hsa-mir-7-5p and examine their effects on proliferation, apoptosis, and the metastatic phenotype of glioma cells regulated by neuro-oncological ventral antigen 2 (NOVA2). We found that the expression levels of circ-U2AF1 and NOVA2 were upregulated, while hsa-miR-7-5p was downregulated in human glioma tissues and glioma cell lines. Our data and bioinformatic analysis indicated the association of these molecules with glioma grade, a positive correlation between circ-U2AF1 and NOVA2 expression levels and a negative correlation of hsa-miR-7-5p with both circ-U2AF1 and NOVA2, respectively. In addition, silencing of circ-U2AF1 expression resulted in increased hsa-miR-7-5p expression and decreased NOVA2 expression both in vitro and in vivo. Luciferase assay confirmed hsa-miR-7-5p as a direct target of circ-U2AF1 and NOVA2 as a direct target of hsa-miR-7-5p. Functionally, silencing of circ-U2AF1 inhibits glioma development by repressing NOVA2 via upregulating hsa-miR-7-5p both in vitro and in vivo. Thus, we assumed that circ-U2AF1 promotes glioma malignancy via derepressing NOVA2 by sponging hsa-miR-7-5p. Taken together, we suggest that circ-U2AF1 can be a prognostic biomarker and the circ-U2AF1/hsa-miR-7-5p/NOVA2 regulatory pathway may be a novel therapeutic target for treating gliomas.  相似文献   

16.
微小RNA(microRNAs, miRNAs,)是一类强大的基因表达调控子,可在转录及转录后水平负调控靶基因的表达来参与生物学过程。沉默信息调节因子1 (silent information regulator1, SIRT1)底物众多,可通过去乙酰化作用参与多种细胞生命活动进程。尽管如此,SIRT1与非编码RNA如miRNA的表达调控关系仍有待深入研究。本文利用荧光定量PCR 检测发现,SIRT1与miR-221和miR-222的表达呈正相关:干扰SIRT1后,miR-221/222呈低水平表达;而过表达SIRT1则促进miR-221/222的表达。将miR-221/222基因簇启动子区序列插入pEZX-GA01构建双荧光素酶报告载体,与SIRT1过表达质粒或干扰序列共转至细胞。结果显示,SIRT1可显著提高miR-221/222启动子区活性,提示SIRT1可在转录水平调节miR-221/222的表达。进一步运用Western 印迹研究发现,在HEK293细胞中过表达miR-221/222可促进细胞的自噬能力,而抑制miR-221/222的表达可减弱自噬。此外,过表达SIRT1的同时抑制miR-221/222 的表达可减弱SIRT1的自噬诱导作用。综上所述,SIRT1可通过诱导miR-221/222的表达促进细胞自噬,其具体作用机制有待进一步探讨。  相似文献   

17.
Circular RNAs have been reported to play significant roles in regulating pathophysiological processes while also guiding clinical diagnosis and treatment of hepatocellular carcinoma (HCC). However, only a few circRNAs have been identified thus far. Herein, we investigated the role of a specific closed-loop structure of hsa_circ_101555 that was generated by back-splicing of the host gene casein kinase 1 gamma 1 (CSNK1G1) in the development and proliferation of HCC. We investigated the expression of Hsa_circ_101555 in HCC and normal tissues using bioinformatics. The expression level of hsa_circ_101555 was further detected by fluorescence in situ hybridization and qRT-PCR in ten HCC patients. Transwell, migration, WST-1 assays, and colony formation assays were used to evaluate the role of hsa_circ_101555 in HCC development and proliferation. The regulatory mechanisms of hsa_circ_101555 in miR-145-5p and CDCA3 were determined by dual luciferase reporter assay. A mouse xenograft model was also used to determine the effect of hsa_circ_101555 on HCC growth in vivo. hsa_circ_101555 showed greater stability than the linear RNA; while in vitro and in vivo results demonstrated that hsa_circ_101555 silencing significantly suppressed cell proliferation, migration, and invasion of HCC cells. Rescue experiments further demonstrated that suppression of miR-145-5p significantly attenuated the biological effects of hsa_circ_101555 knockdown in HCC cells. We also identified a putative oncogene CDCA3 as a potential miR-145-5p target. Thus, our results demonstrated that hsa_circ_101555 might function as a competing endogenous RNA of miR-145-5p to upregulate CDCA3 expression in HCC. These findings suggest that hsa_circ_101555 may be a potential therapeutic target for patients with HCC.Subject terms: Liver cancer, Long non-coding RNAs  相似文献   

18.
19.
Esophageal carcinoma (EC) bears one of the most rapid-growing incidences in cancers, which also has the highest mortality rate worldwide. Multiple studies have authenticated that circular RNAs (circRNAs) significantly work on the progression of cancers. circRNA hsa_circ_0030018 was also verified to exert functions on the development of glioma previously. Nevertheless, the biological function of hsa_circ_0030018 in EC has not been well elucidated yet. In the present study, the results displayed the expression of hsa_circ_0030018 was dramatically increased in EC cells. Inhibition of has_circ_0030018 suppressed cell proliferation, migration, and epithelial-mesenchymal transition (EMT) process in EC. Based on molecular mechanism assays, has_circ_0030018 served as a sponge of miR-599. Enabled homolog (ENAH), which exhibited high expression in EC cells, was confirmed to be a downstream target gene of miR-599. Additionally, has_circ_0030018 positively regulated ENAH expression while miR-599 negatively regulated ENAH expression. Finally, by employing rescue assays, ENAH deficiency partially counteracted the promoting function of miR-599 silence on cell proliferation, migration, and EMT process in EC cotransfected with sh- has_circ_0030018#1 cells. In conclusion, hsa_circ_0030018 acted as a sponge of miR-599 to aggravate EC progression by regulating ENAH expression. Therefore, hsa_circ_0030018 might serve as a promising biomarker and therapeutic target for EC.  相似文献   

20.
According to ceRNA theory, circular RNAs could regulate certain protein expression through targeting corresponding microRNAs to affect the progression of multiple diseases, including colorectal cancer. CircTP53 (hsa_circ_0107702), highly expressed in thyroid cancer tissues, could promote the proliferation of thyroid cancer. However, the function of circTP53 in colorectal cancer is still unclear. In our study, we found circTP53 was significantly up-regulated in colorectal cancer tissues from patients and in colorectal cell lines. Next, using colorectal cell lines, we confirmed that circTP53 promoted the proliferation, migration and invasion, and reduced the apoptotic rate. Furthermore, through bioinformatics analysis and experimental confirmation, we found circTP53 functioned as the sponge of miR-876-3p, and miR-876-3p reversed the phenotype of circTP53 on the facilitation of colorectal cancer. Additionally, we found circTP53 promoted the progression of colorectal cancer by elevating the expression of CDKL3. At last, we suggested that circTP53 knockdown could inhibit colorectal cancer progression in vivo. In conclusion, circTP53 was highly expressed in colorectal cancer tissues, and promoted colorectal cancer progression via modulating miR-876-3p/CDKL3 axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号