首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CHO cells are the preferred host for the production of complex pharmaceutical proteins in the biopharmaceutical industry, and genome engineering of CHO cells would benefit product yield and stability. Here, we demonstrated the efficacy of a Dnmt3a‐deficient CHO cell line created by CRISPR/Cas9 genome editing technology through gene disruptions in Dnmt3a, which encode the proteins involved in DNA methyltransferases. The transgenes, which were driven by the 2 commonly used CMV and EF1α promoters, were evaluated for their expression level and stability. The methylation levels of CpG sites in the promoter regions and the global DNA were compared in the transfected cells. The Dnmt3a‐deficent CHO cell line based on Dnmt3a KO displayed an enhanced long‐term stability of transgene expression under the control of the CMV promoter in transfected cells in over 60 passages. Under the CMV promoter, the Dnmt3a‐deficent cell line with a high transgene expression displayed a low methylation rate in the promoter region and global DNA. Under the EF1α promoter, the Dnmt3a‐deficient and normal cell lines with low transgene expression exhibited high DNA methylation rates. These findings provide insight into cell line modification and design for improved recombinant protein production in CHO and other mammalian cells.  相似文献   

2.
In our previous study, we demonstrated that episomal vectors based on the characteristic sequence of matrix attachment regions (MARs) and containing the cytomegalovirus (CMV) promoter allow transgenes to be maintained episomally in Chinese hamster ovary (CHO) cells. However, the transgene expression was unstable and the number of copies was low. In this study, we focused on enhancers, various promoters and promoter variants that could improve the transgene expression stability, expression magnitude (level) and the copy number of a MAR‐based episomal vector in CHO‐K1 cells. In comparison with the CMV promoter, the eukaryotic translation elongation factor 1 α (EF‐1α, gene symbol EEF1A1) promoter increased the transfection efficiency, the transgene expression, the proportion of expression‐positive clones and the copy number of the episomal vector in long‐term culture. By contrast, no significant positive effects were observed with an enhancer, CMV promoter variants or CAG promoter in the episomal vector in long‐term culture. Moreover, the high‐expression clones harbouring the EF‐1α promoter tended to be more stable in long‐term culture, even in the absence of selection pressure. According to these findings, we concluded that the EF‐1α promoter is a potent regulatory sequence for episomal vectors because it maintains high transgene expression, transgene stability and copy number. These results provide valuable information on improvement of transgene stability and the copy number of episomal vectors.  相似文献   

3.
Sequences proximal to transgene integration sites are able to regulate transgene expression, resulting in complex position effect variegation. Position effect variegation can cause differences in epigenetic modifications, such as DNA methylation and histone acetylation. However, it is not known which factor, position effect or epigenetic modification, plays a more important role in the regulation of transgene expression. We analyzed transgene expression patterns and epigenetic modifications of transgenic pigs expressing green fluorescent protein, driven by the cytomegalovirus (CMV) promoter. DNA hypermethylation and loss of acetylation of specific histone H3 and H4 lysines, except H4K16 acetylation in the CMV promoter, were consistent with a low level of transgene expression. Moreover, the degree of DNA methylation and histone H3/H4 acetylation in the promoter region depended on the integration site; consequently, position effect variegation caused variations in epigenetic modifications. The transgenic pig fibroblast cell lines were treated with DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine and/or histone deacetylase inhibitor trichostatin A. Transgene expression was promoted by reversing the DNA hypermethylation and histone hypoacetylation status. The differences in DNA methylation and histone acetylation in the CMV promoter region in these cell lines were not significant; however, significant differences in transgene expression were detected, demonstrating that variegation of transgene expression is affected by the integration site. We conclude that in this pig model, position effect variegation affects transgene expression.  相似文献   

4.
Transgenic technology has greatly facilitated our understanding of gene function, producing pharmaceutical proteins, and generating models for the study of human diseases. However, epigenetic silencing is still the most major limitation. In this study, we employed DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (5-Aza-dC) and histone deacetylase inhibitor Trichostatin A (TSA) to study the reactivation of silenced green fluorescent protein (GFP) transgene driven by the cytomegalovirus (CMV) promoter in three fibroblast cell lines from transgenic pigs (tPFs). Analysis showed that porcine fetal fibroblasts (PFF) treated with 0.5 μM 5-Aza-dC for 48 h or 0.25 μM TSA for 24 h had no significantly relevant deaths and no considerably morphological changes. We observed that transgene underwent progressive silencing in a long time course of culture in vitro, and this was correlated with DNA hypermethylation and hypoacetylation of specific histone H3 lysines in the CMV promoter region. Moreover, silenced transgene could be reactivated with 5-Aza-dC or/and TSA treatment by reversing the CMV promoter status of histone hypoacetylation and DNA hypermethylation, and the combination treatment with both agents resulted in a synergistic activation of the transgene, suggesting a cross talk between histone acetylation and DNA methylation. Furthermore, the combination treatment once per 10 days could maintain transgene expression in a high level for more than 60 days by sustaining DNA hypomethylation and histone hyperacetylation. In conclusion, our results suggest that methyltransferase inhibitor 5-Aza-dC and histone deacetylase inhibitor TSA can reactivate silenced transgene and maintain transgene expression by induction of DNA hypomethylation and histone hyperacetylation in the promoter region.  相似文献   

5.
Transgenic animals have been established for studying gene function, improving animals’ production traits, and providing organ models for the exploration of human diseases. However, the stability of inheritance and transgene expression in transgenic animals has gained extensive attention. The unstable expression of transgene through DNA methyltransferase (DNMT) targeting to the methylation of transgenic DNA such as CAG promoter and Egfp coding region in homozygous transgenic animals is still unknown. In the present study, the offspring from the same litter of homozygous transgenic mice carrying ubiquitously expressed enhanced green fluorescence protein driven by CMV early enhancer/chicken β-actin (CAG) promoter was observed to have unstable expression of transgene Egfp, quantitative PCR, western blot and bisulfite sequencing were conducted to quantify the expressional characteristics and methylation levels in various tissues. The correlation between transgene expression and methylation was analyzed. We have found that transgene expression is dependent on the methylation of CAG promoter, but not Egfp coding region. We have also characterized the correlation between the methylation of CAG promoter and DNMT, and found that only Dnmt3b expression is correlated with the methylation of CAG promoter. In conclusion, Dnmt3b-related methylation of CAG promoter can inhibit the transgene expression and may result in the unstable expression of transgene in the offspring from the same litter of homozygous transgenic mice.  相似文献   

6.
Cytomegalovirus (CMV) immediate early promoter is a powerful promoter frequently used for driving the expression of transgenes in mammalian cells. However, this promoter gradually becomes silenced in stably transfected cells. We employed Chinese Hamster Ovary (CHO) and human pancreatic cancer (Panc 1) cells stably tansfected with three glycogenes driven by a CMV promoter to study the activation of silenced glycogenes. We found that butyrate, tricostatin A (TSA), and 5-aza-2-deoxycytidine (5-Aza-dC) can activate these CMV-driven glycogenes. The increase in mRNA and protein of a glycogene occurred 8–10 h after butyrate treatment, suggesting an indirect effect of butyrate in the activation of the transgene. The enhanced expression of the trangenes by butyrate and TSA, known inhibitors of histone deacetylase, was independent of the transgene or cell type. However, the transgene can be activated by these two agents in only a fraction of the cells derived from a single clone, suggesting that inactivation of histone deacetylase can only partially explain silencing of the transgenes. Combination treatment of one or both agents with 5-Aza-dC, a known inhibitor of DNA methylase, resulted in a synergistic activation of the transgene, suggesting a cross-talk between histone acetylation and DNA demethylation. Understanding the mechanisms of the inactivation and reactivation of CMV promoter-controlled transgenes should help develop an effective strategy to fully activate the CMV promoter-controlled therapeutic genes silenced by the host cells. Published in 2005.  相似文献   

7.
With the emergence of new CRISPR/dCas9 tools that enable site specific modulation of DNA methylation and histone modifications, more detailed investigations of the contribution of epigenetic regulation to the precise phenotype of cells in culture, including recombinant production subclones, is now possible. These also allow a wide range of applications in metabolic engineering once the impact of such epigenetic modifications on the chromatin state is available.In this study, enhanced DNA methylation tools were targeted to a recombinant viral promoter (CMV), an endogenous promoter that is silenced in its native state in CHO cells, but had been reactivated previously (β-galactoside α-2,6-sialyltransferase 1) and an active endogenous promoter (α-1,6-fucosyltransferase), respectively. Comparative ChIP-analysis of histone modifications revealed a general loss of active promoter histone marks and the acquisition of distinct repressive heterochromatin marks after targeted methylation. On the other hand, targeted demethylation resulted in autologous acquisition of active promoter histone marks and loss of repressive heterochromatin marks. These data suggest that DNA methylation directs the removal or deposition of specific histone marks associated with either active, poised or silenced chromatin. Moreover, we show that de novo methylation of the CMV promoter results in reduced transgene expression in CHO cells. Although targeted DNA methylation is not efficient, the transgene is repressed, thus offering an explanation for seemingly conflicting reports about the source of CMV promoter instability in CHO cells.Importantly, modulation of epigenetic marks enables to nudge the cell into a specific gene expression pattern or phenotype, which is stabilized in the cell by autologous addition of further epigenetic marks. Such engineering strategies have the added advantage of being reversible and potentially tunable to not only turn on or off a targeted gene, but also to achieve the setting of a desirable expression level.  相似文献   

8.
目的: 探讨小鼠胚胎干细胞(mouse embryonic stem cells, mESCs)向生殖细胞(Embryonic germ cells,EG)分化过程中5-杂氮-2'-脱氧胞苷(5-Aza-2'-deoxycytidine,5-Aza-dC) 对DNA甲基化转移酶Dnmt1和Dnmt3a及生殖细胞特征基因Mvh表达变化的DNA甲基化调控机制。方法:将mES细胞分化形成拟胚体(embryoid bodies, EBs) 作为向生殖细胞分化的启动步骤,采用不同浓度(0.05μmol/L,0.1μmol/L,0.5μmol/L,1μmol/L,3μmol/L)处理EBs,RT-PCR实时荧光定量RT-PCR和Western blot分别检测检测在5-Aza-dC处理前后Dnmt1和Dnmt3a在ES细胞和EBs中的表达,甲基化特异性PCR(MSP)检测原始生殖细胞分化特征基因Mvh启动子甲基化状态。结果: 5-Aza-dC的浓度在0.05 μmol/L~1 μmol/L之间时,EBs保持较高的存活率而EBs的形态明显发生了变化;5-Aza-dC 处理后, Dnmt1和Dnmt3a在EBs中mRNA表达量明显降低,其变化特点与WB结果相一致。MSP和测序结果显示, Mvh启动子区表现为部分甲基化,5-Aza-dC 处理后的4d EBs中Mvh CpG岛有4个CG位点发生突变,而mES细胞中未见突变。结论: EBs经5-Aza-dC处理后,Dnmt1和Dnmt3a的表达明显下调;同时,Mvh启动子发生部分甲基化,有可能启动了向生殖细胞的分化进程。  相似文献   

9.
Duan B  Cheng L  Gao Y  Yin FX  Su GH  Shen QY  Liu K  Hu X  Liu X  Li GP 《Theriogenology》2012,78(4):793-802
The fat-1 gene was isolated from roundworm Caenorhabditis elegans, and built into pIRES2-EGFP expression vectors driven by cytomegalovirus (CMV) promoter or cytomegalovirus enhancer and chickenβ-actin (CAG) promoter. Both CMV- and CAG-driven expression vectors were transfected to sheep fetal fibroblast cells. Positive transfected cells were used as donors for somatic cell nuclear transfer (SCNT) and the cloned embryos were transferred into the oviducts of synchronized recipient sheep. Two lambs derived from CMV vector and three lambs derived from CAG vector developed to term. Although Southern analyses using tissues from the two lambs derived from CMV vectors indicated integration of fat-1 gene into the genome, fat-1 mRNAs were not detected by RT-PCR. However, there was fat-1 expression (detected by RT-PCR) in tissues from transgenic lambs driven by CAG vectors. To investigate potential mechanisms involved in the two transgene models, methylation state of the vector promoters were examined. In CMV-driven transgenics, CMV promoters had almost no methylation in transfected cells and the resultant cloned embryos, whereas high methylations were detected in tissues and organs in transgenic lambs. In the CAG-driven transgenics, there were almost no methylations in transgenic cells and transgenic cloned embryos, and cloned lambs expressed fat-1 mRNA (detected by RT-PCR). Moreover, although SV40 promoters which drove neo/kan marker gene in CMV vectors were highly methylated in tissues from transgenic lambs, they were without methylation in cells and embryos. Therefore, we concluded that highly methylated CMV promoters induced the silence of fat-1 transgene expression in sheep. Furthermore, CAG promoter, but not CMV promoter was suitable for generation of fat-1 transgenic sheep.  相似文献   

10.
Vectors flanked by regulatory DNA elements have been used to generate stable cell lines with high productivity and transgene stability; however, regulatory elements in Chinese hamster ovary (CHO) cells, which are the most widely used mammalian cells in biopharmaceutical production, are still poorly understood. We isolated a novel gene regulatory element from CHO‐K1 cells, designated E77, which was found to enhance the stable expression of a transgene. A genomic library was constructed by combining CHO‐K1 genomic DNA fragments with a CMV promoter‐driven GFP expression vector, and the E77 element was isolated by screening. The incorporation of the E77 regulatory element resulted in the generation of an increased number of clones with high expression, thereby enhancing the expression level of the transgene in the stable transfectant cell pool. Interestingly, the E77 element was found to consist of two distinct fragments derived from different locations in the CHO genome shotgun sequence. High and stable transgene expression was obtained in transfected CHO cells by combining these fragments. Additionally, the function of E77 was found to be dependent on its site of insertion and specific orientation in the vector construct. Our findings demonstrate that stable gene expression mediated by the CMV promoter in CHO cells may be improved by the isolated novel gene regulatory element E77 identified in the present study.  相似文献   

11.
12.
Efficient and sustained transgene expression are desirable features for many envisioned gene therapy applications, yet synthetic vectors tested to date are rarely successful in achieving these properties. Substantial research efforts have focused on protection of plasmid DNA from nuclease attack as well as increasing nuclear transport of plasmids, resulting in significant but still limited gains. We show here that a further barrier to efficient and sustained expression exists for synthetic vectors: plasmid DNA methylation. We have investigated this barrier for transient expression of a green fluorescent protein (GFP) transgene delivered via Lipofectamine, by testing the effects of culturing C3A human hepatoblastoma cells with 5-Azacytidine (AzaC), an irreversible inhibitor of DNA methyltransferase. To control for loss of plasmids by dilution during mitosis, transfected cells were growth-arrested for 1 week and their subsequent GFP expression quantified by FACS. In the presence of AzaC, a significantly greater fraction of transfected cells remained GFP-positive and possessed higher levels of GFP production relative to AzaC-untreated cells. Additionally, we have applied a Methyl-Assisted PCR (MAP) assay to quantify a subset of methylated CpG sites in the GFP gene. When MAP was performed on plasmids isolated from transfected cells, the extent of methylation was found to be inversely related to the level of GFP expression.  相似文献   

13.
14.
林艳  李照熙  王芳  王天云 《生物技术通讯》2012,23(4):584-588,620
目的:建立一种简单经济的哺乳动物细胞附着体质粒还原实验方法。方法:构建附着体载体,转染中国卵巢仓鼠(CHO)细胞和小鼠脑神经瘤细胞Neuro-2a,利用改良的赫特裂解法提取附着体质粒,CaCl2法转化附着质粒至宿主菌大肠杆菌DH5α,再次从DH5α中提取质粒,将转染前后质粒用KpnⅠ/BamHⅠ双酶切和BamHⅠ单酶切,并将转染前后的质粒进行DNA测序分析。结果:与最初转染的质粒相比,还原质粒双酶切和单酶切后的条带大小一致;DNA测序分析表明,转染前后质粒中的插入序列相同。结论:建立了可用于质粒还原实验的简单的CaCl2转化方法。  相似文献   

15.
Cancer stem cell (CSC) theory reveals a new insight into the understanding of tumorigenesis and metastasis. Recently, DNA methylation is suggested to be a potential epigenetic mechanism for maintenance of CSCs. What's more, studies have shown that DNA methyltransferase (DNMT) is essential for CSCs and deletion of DNMT can reduce tumorigenesis by limiting CSC pool. Therefore, targeting the epigenetic modifiers especially DNA methylation offers an optional strategy for treating human cancers. In the present study we found that DNMT inhibitor 5-Aza-2′-deoxycytidine (5-AzaDC) markedly reduced colorectal CSC abundance in vitro and suppressed liver metastatic tumor growth in vivo. And 5-AzaDC inhibited the expression of active β-catenin and down-regulated the Wnt signaling pathway. The Wnt inhibitors were frequently inactivated by promoter methylation in colorectal cancer; however analysis of TCGA data base showed that only the expression of SFRP1 was significantly reduced in tumors compared to normal tissues. In addition, restoring of SFRP1 expression inhibited the stem cell-like potential of colorectal cancer cells. Our results indicated that inhibition of DNMT blocked the self-renewal of colorectal CSCs and SFRP1 was essential for the maintenance of colorectal CSCs.  相似文献   

16.
17.
J E Nelson  M A Kay 《Journal of virology》1997,71(11):8902-8907
Recombinant adenovirus vectors represent an efficient means of transferring genes into many different organs. The first-generation E1-deleted vector genome remains episomal and, in the absence of host immunity, persists long-term in quiescent tissues such as the liver. The mechanism(s) which allows for persistence has not been established; however, vector DNA replication may be important because replication has been shown to occur in tissue culture systems. We have utilized a site-specific methylation strategy to monitor the replicative fate of E1-deleted adenovirus vectors in vitro and in vivo. Methylation-marked adenovirus vectors were produced by the addition of a methyl group onto the N6 position of the adenine base of XhoI sites, CTCGAG, by propagation of vectors in 293 cells expressing the XhoI isoschizomer PaeR7 methyltransferase. The methylation did not affect vector production or transgene expression but did prevent cleavage by XhoI. Loss of methylation through viral replication restores XhoI cleavage and was observed by Southern analysis in a wide variety of, but not all, cell culture systems studied, including hepatoma and mouse and macaque primary hepatocyte cultures. In contrast, following liver-directed gene transfer of methylated vector in C57BL/6 mice, adenovirus vector DNA was not cleaved by XhoI and therefore did not replicate, even after a period of 3 weeks. Although replication may occur in some tissues, these results show that stabilization of the vector within the target tissue prior to clearance by host immunity is not dependent upon replication of the vector, demonstrating that the input transduced DNA genomes were the persistent molecules. This information will be useful for the design of optimal adenovirus vectors and perhaps nonviral episomal vectors for clinical gene therapy.  相似文献   

18.
5-Aza-2′-deoxycytidine (5-aza-dC) is a nucleoside analogue with cytotoxic and DNA demethylating effects. Here we show that 5-aza-dC induces the proteasomal degradation of free (non-chromatin bound) DNMT1 through a mechanism which is dependent on DNA synthesis and the targeting of incorporated 5-aza-dC residues by DNMT1 itself. Thus, 5-aza-dC induces Dnmt1 degradation in wild-type mouse ES cells, but not in Dnmt [3a–/–, 3b–/–] mouse ES cells which express Dnmt1 but lack DNA methylation (<0.7% of CpG methylated) and contain few hemi-methylated CpG sites, these being the preferred substrates for Dnmt1. We suggest that adducts formed between DNMT1 and 5-aza-dC molecules in DNA induce a ubiquitin-E3 ligase activity which preferentially targets free DNMT1 molecules for degradation by the proteasome. The proteasome inhibitor MG132 prevents DNMT1 degradation and reduces hypomethylation induced by 5-aza-dC.  相似文献   

19.
In this work we explored whether DNA methyltransferase 3a (Dnmt3a) targeted to the HBV X promoter (XP) causes epigenetic suppression of hepatitis B virus (HBV). The C-terminus of Dnmt3a (Dnmt3aC) was fused to a six-zinc-finger peptide specific to XP to form a fused DNA methyltransferase (XPDnmt3aC). The binding and methyl-modifying specificity of XPDnmt3aC were verified with an electrophoretic mobility shift assay and methylation-specific PCR, respectively. XP activity and HBV expression were clearly downregulated in HepG2 cells transfected with plasmid pXPDnmt3aC. The injection of XPDnmt3aC into HBV transgenic (TgHBV) mice also showed significant inhibition, leading to low serum HBV surface protein (HBsAg) levels and a reduced viral load. Thus, XPDnmt3aC specifically silenced HBV via site-selective DNA methylation delivered by zinc-finger peptides. This study establishes the foundation of an epigenetic way of controlling HBV-related diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号