首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ulcerative colitis is an autoimmune-inflammatory disease characterized by increased proliferation of colonic epithelial cells, dysregulation of signal transduction pathways, elevated mucosal T cell activation, increased production of proinflammatory cytokines, and enhanced leukocyte infiltration into colonic interstitium. Several compounds that possess antiproliferative properties and/or inhibit cytokine production exhibit a therapeutic effect in murine models of colitis. Mammalian target of rapamycin (mTOR), a protein kinase regulating cell proliferation, is implicated in colon carcinogenesis. In this study, we report that a novel haloacyl aminopyridine-based molecule (P2281) is a mTOR inhibitor and is efficacious in a murine model of human colitis. In vitro studies using Western blot analysis and cell-based ELISA assays showed that P2281 inhibits mTOR activity in colon cancer cells. In vitro and in vivo assays of proinflammatory cytokine production revealed that P2281 diminishes induced IFN-gamma production but not TNF-alpha production, indicating preferential inhibitory effects of P2281 on T cell function. In the dextran sulfate sodium (DSS) model of colitis, 1) macroscopic colon observations demonstrated that P2281 significantly inhibited DSS-induced weight loss, improved rectal bleeding index, decreased disease activity index, and reversed DSS-induced shortening of the colon; 2) histological analyses of colonic tissues revealed that P2281 distinctly attenuated DSS-induced edema, prominently diminished the leukocyte infiltration in the colonic mucosa, and resulted in protection against DSS-induced crypt damage; and 3) Western blot analysis showed that P2281 blocks DSS-induced activation of mTOR. Collectively, these results provide direct evidence that P2281, a novel mTOR inhibitor, suppresses DSS-induced colitis by inhibiting T cell function and is a potential therapeutic for colitis. Given that compounds with anticancer activity show promising anti-inflammatory efficacy, our findings reinforce the cross-therapeutic functionality of potential drugs.  相似文献   

3.
Ginsenoside Rh2 (GRh2) has been reported to have therapeutic effects on various diseases. However, whether it may also affect the recovery from ulcerative colitis remains unknown. Here we induced colitis in mice by dextran sulfate sodium (DSS) administration, and then treated the mice with GRh2. We found that GRh2-treated mice showed significant alleviation of the DSS-induced colitis. Moreover, significant increase in the activity of TGFβ signaling was detected in the GRh2-treated colon that had received DSS. To investigate whether there is a causative link among GRh2 treatment, TGFβ signaling augment and the cure of colitis, we gave the DSS-treated mice a combination of GRh2 and a specific TGFβ receptor I inhibitor, SB431542. SB431542 significantly decreased the activation of TGFβ signaling in the colon from the GRh2-administrated mice, and consequently attenuated the therapeutic effect of GRh2. Our data thus demonstrate that GRh2 may alleviate DSS-induced colitis via augmenting TGFβ signaling.  相似文献   

4.
Systemic lupus erythematosus (SLE) is an autoimmune disease, characterized by systemic chronic inflammation that can affect multiple major organ systems. Although the etiology of SLE is known to involve a variety of factors such as the environment, random factors and genetic susceptibility, the exact role of CD11b+Gr1+ myeloid cells in lupus progression is not fully understood. Myeloid-derived CD11b+Gr1+ cells are thought to be a heterogeneous group of immature myeloid cells with immune function. Some studies have reported that CD11b+Gr1+ cells and the activation of mTOR pathway are involved in the pathogenesis of systemic lupus erythematosus (SLE). However, it is still not clarified about the mechanism of influence of lupus microenvironment and mTOR signaling on CD11b+Gr1+ cells. In the present study, we found that the percentage of CD11b+Gr1+ cells increased prior to the abnormal changes of Th17, Treg, T and B cells during lupus development. TLR7 and IFN-α signaling synergized to promote CD11b+Gr1+ cell accumulation in an mTOR-dependent manner. Moreover, compared to a traditional mTOR inhibitor, INK128 inhibited more effectively the disease activity via regulating CD11b+Gr1+ cell expansion and functions. Furthermore, TLR7/IFN-α-modified CD11b+Gr1+ cells promoted unbalance of Th17/Tregs and were inclined to differentiate into macrophages via the mTOR pathway. In conclusion, CD11b+Gr1+ cells increased in the early stages of the lupus progression and mTOR pathway was critical for CD11b+Gr1+ cells in lupus development, suggesting the changes of inflammation-induced CD11b+Gr1+ cells initate lupus development. We also provide evidence for the first time that INK128, a second generation mTOR inhibitor, has a good therapeutic action on lupus development by regulating CD11b+Gr1+ cells.  相似文献   

5.
Stem cell transplantation has been generally considered as promising therapeutics in preserving or recovering functions of lost, damaged, or aging tissues. Transplantation of primordial germ cells (PGCs) or oogonia stem cells (OSCs) can reconstitute ovarian functions that yet sustain for only short period of time, limiting potential application of stem cells in preservation of fertility and endocrine function. Here, we show that mTOR inhibition by INK128 extends the follicular and endocrine functions of the reconstituted ovaries in aging and premature aging mice following transplantation of PGCs/OSCs. Follicular development and endocrine functions of the reconstituted ovaries by transplanting PGCs into kidney capsule of the recipient mice were maintained by INK128 treatment for more than 12 weeks, in contrast to the controls for only about 4 weeks without receiving the mTOR inhibitors. Comparatively, rapamycin also can prolong the ovarian functions but for limited time. Furthermore, our data reveal that INK128 promotes mitochondrial function in addition to its known function in suppression of immune response and inflammation. Taken together, germline stem cell transplantation in combination with mTOR inhibition by INK128 improves and extends the reconstituted ovarian and endocrine functions in reproductive aging and premature aging mice.  相似文献   

6.
Although fluoxetine, a selective serotonin reuptake inhibitor, is known to demonstrate anti-inflammatory activity, little information is available on the effect of fluoxetine regarding intestinal inflammation. This study investigates the role of fluoxetine in the attenuation of acute murine colitis by suppression of the NF-κB pathway in intestinal epithelial cells (IEC). Fluoxetine significantly inhibited activated NF-κB signals and the upregulated expression of interleukin-8 (IL-8) in COLO 205 colon epithelial cells stimulated with tumor necrosis factor-α (TNF-α). Pretreatment with fluoxetine attenuated the increased IκB kinase (IKK) and IκBα phosphorylation induced by TNF-α. In a murine model, administration of fluoxetine significantly reduced the severity of dextran sulfate sodium (DSS)-induced colitis, as assessed by the disease activity index, colon length, and histology. In addition, the DSS-induced phospho-IKK activation, myeloperoxidase activity, a parameter of neutrophil accumulation, and the secretion of macrophage-inflammatory protein-2, a mouse homolog of IL-8, were significantly decreased in fluoxetine-pretreated mice. Moreover, fluoxetine significantly attenuated the development of colon cancer in mice inoculated with azoxymethane and DSS. These results indicate that fluoxetine inhibits NF-κB activation in IEC and that it ameliorates DSS-induced acute murine colitis and colitis-associated tumorigenesis, suggesting that fluoxetine is a potential therapeutic agent for the treatment of inflammatory bowel disease.  相似文献   

7.
《Free radical research》2013,47(12):1427-1436
Abstract

Nitric oxide (NO) is thought to be a key molecule in the progression of ulcerative colitis and experimental colitis induced by dextran sodium sulfate (DSS). However, the detrimental effect of DSS-induced NO production on the colonic mucosa is incompletely understood. Increases in the expression of adhesion molecules in the vascular endothelium and activated neutrophils (thereby releasing injurious molecules such as reactive oxygen species) are reportedly associated with the pathogenesis of DSS-induced colitis. We investigated if the detrimental effect of NO production on the colonic mucosa was attributable to the activation of neutrophil infiltration by NO in mice with DSS-induced colitis. NO2?/NO3? content in the middle and distal colon was increased on days 5 and 7, but alterations in the proximal colon were not observed. Myeloperoxidase (MPO) activity and expression of P-selectin and intercellular adhesion molecule-1 (ICAM-1) were significantly increased in the entire colon, whereas TNF-α levels were significantly increased only in the middle and distal colon on day 7. The pathology of colitis and increases in colonic MPO activity, P-selectin, ICAM-1, and TNF-α levels were suppressed by the inducible NO synthase (iNOS)-specific inhibitor aminoguanidine and NO scavenger c-PTIO, whereas all but TNF-α levels were increased by the non-specific NOS inhibitor L-NAME. These findings suggest that iNOS-derived NO increases TNF-α levels in the middle and distal colon and increased TNF-α levels induce expression of P-selectin and ICAM-1, thereby promoting the infiltration of activated neutrophils, which leads to damage to colonic tissue.  相似文献   

8.
Effective immunotherapy for type 1 diabetes (T1D) relies on active induction of peripheral tolerance. Myeloid-derived suppressor cells (MDSCs) play a critical role in suppressing immune responses in various pathologic settings via multiple mechanisms, including expansion of regulatory T cells (Tregs). In this study, we investigated whether MDSCs could act as APCs to induce expansion of Ag-specific Tregs, suppress T cell proliferation, and prevent autoimmune T1D development. We found that MDSC-mediated expansion of Tregs and T cell suppression required MHC-dependent Ag presentation. A murine T1D model was established in INS-HA/RAG(-/-) mice in which animals received CD4-HA-TCR transgenic T cells via adoptive transfer. We found a significant reduction in the incidence of diabetes in recipients receiving MDSC plus HA, but not OVA peptide, leading to 75% diabetes-free mice among the treated animals. To test further whether MDSCs could prevent diabetes onset in NOD mice, nondiabetic NOD/SCID mice were injected with inflammatory T cells from diabetic NOD mice. MDSCs significantly prevented diabetes onset, and 60% of MDSC-treated mice remained diabetes free. The pancreata of treated mice showed significantly lower levels of lymphocyte infiltration in islet and less insulitis compared with that of the control groups. The protective effects of MDSCs might be mediated by inducing anergy in autoreactive T cells and the development of CD4(+)CD25(+)Foxp3(+) Tregs. Thist study demonstrates a remarkable capacity of transferred MDSCs to downregulate Ag-specific autoimmune responses and prevent diabetes onset, suggesting that MDSCs possess great potential as a novel cell-based tolerogenic therapy in the control of T1D and other autoimmune diseases.  相似文献   

9.
Increasing evidence suggests that the aryl hydrocarbon receptor (AhR) pathway has an important role in the regulation of inflammatory responses. Most recently, we have shown that the activation of the AhR pathway by a potent AhR agonist inhibits the development of dextran sodium sulfate (DSS)-induced colitis, a model of human ulcerative colitis, by the induction of prostaglandin E2 (PGE2) in the large intestine. Because several strains of probiotic lactic acid bacteria have been reported to inhibit DSS-induced colitis by unidentified mechanisms, we hypothesized that particular strains of lactic acid bacterium might have the potential to activate the AhR pathway, thereby inhibiting DSS-induced colitis. This study investigated whether there are specific lactic acid bacterial strains that can activate the AhR pathway, and if so, whether this AhR-activating potential is associated with suppression of DSS-induced colitis. By using AhR signaling reporter cells, we found that Lactobacillus bulgaricus OLL1181 had the potential to activate the AhR pathway. OLL1181 also induced the mRNA expression of cytochrome P450 family 1A1 (CYP1A1), a target gene of the AhR pathway, in human colon cells, which was inhibited by the addition of an AhR antagonist, α-naphthoflavon (αNF). In addition, mice treated orally with OLL1181 showed an increase in CYP1A1 mRNA expression in the large intestine and amelioration of DSS-induced colitis. Thus, OLL1181 can induce activation of the intestinal AhR pathway and inhibit DSS-induced colitis in mice. This strain of lactic acid bacterium has therefore the potential to activate the AhR pathway, which may be able to suppress colitis.  相似文献   

10.
This study aims to explore the protective effects of Picroside III, an active ingredient of Picrorhiza scrophulariiflora, on the intestinal epithelial barrier in tumor necrosis factor-α (TNF-α) induced Caco-2 cells and dextran sulfate sodium (DSS) induced colitis in mice. Results show that Picroside III significantly alleviated clinical signs of colitis including body weight loss, disease activity index increase, colon shortening, and colon tissue damage. It also increased claudin-3, ZO-1 and occludin expressions and decreased claudin-2 expression in the colon tissues of mice with colitis. In vitro, Picroside III also significantly promoted wound healing, decreased the permeability of cell monolayer, upregulated the expressions of claudin-3, ZO-1 and occludin and downregulated the expression of claudin-2 in TNF-α treated Caco-2 cells. Mechanism studies show that Picroside III significantly promoted AMP-activated protein kinase (AMPK) phosphorylation in vitro and in vivo, and blockade with AMPK could significantly attenuate the upregulation of Picroside III in ZO-1 and occludin expressions and the downregulation of claudin-2 expression in TNF-α treated Caco-2 cells. In conclusion, this study demonstrates that Picroside III attenuated DSS-induced colitis by promoting colonic mucosal wound healing and epithelial barrier function recovery via the activation of AMPK.  相似文献   

11.
It has been established that mammalian target of Rapamycin (mTOR) inhibitors have anti-inflammatory effects in models of experimental colitis. However, the underlying mechanism is largely unknown. In this research, we investigate the anti-inflammatory effects of AZD8055, a potent mTOR inhibitor, on T cell response in dextran sulfate sodium (DSS)-induced colitis in mice, a commonly used animal model of inflammatory bowel diseases (IBD). Severity of colitis is evaluated by changing of body weight, bloody stool, fecal consistency, histology evaluation and cytokine expression. We find that AZD8055 treatment attenuates DSS-induced body weight loss, colon length shortening and pathological damage of the colon. And AZD8055 treatment decreases colonic expression of genes encoding the pro-inflammatory cytokines interferon-γ, interleukin (IL)-17A, IL-1β,IL-6 and tumor necrosis factor(TNF)-a and increases colonic expression of anti-inflammatory cytokines IL-10. We show that AZD8055 treatment decreases the percentages of CD4+ T cells and CD8+ T cells in spleen, lymph nodes and peripheral blood of mice. We also find that AZD8055 treatment significantly reduces the number of T helper 1(TH1) cells and TH17 cells and increases regulatory T (Treg) cells in the lamina propria and mesenteric lymph nodes. Furthermore, we demonstrates that AZD8055 suppresses the proliferation of CD4+ and CD8+ T cells and the differentiation of TH1/TH17 cells and expands Treg cells in vitro. The results suggest that, in experimental colitis, AZD8055 exerts anti-inflammatory effect by regulating T helper cell polarization and proliferation.  相似文献   

12.
Osteoclasts play a key role in the development of cancer-associated osteolytic lesions. The number and activity of osteoclasts are often enhanced by tumors. However, the origin of osteoclasts is unknown. Myeloid-derived suppressor cells (MDSCs) are one of the pre-metastatic niche components that are induced to expand by tumor cells. Here we show that the MDSCs can differentiate into mature and functional osteoclasts in vitro and in vivo. Inoculation of 5TGM1-GFP myeloma cells into C57BL6/KaLwRij mice led to a significant expansion of MDSCs in blood, spleen, and bone marrow over time. When grown in osteoclastogenic media in vitro, MDSCs from tumor-challenged mice displayed 14 times greater potential to differentiate into mature and functional osteoclasts than those from non-tumor controls. Importantly, MDSCs from tumor-challenged LacZ transgenic mice differentiated into LacZ+osteoclasts in vivo. Furthermore, a significant increase in tumor burden and bone loss accompanied by increased number of osteoclasts was observed in mice co-inoculated with tumor-challenged MDSCs and 5TGM1 cells compared to the control animals received 5TGM1 cells alone. Finally, treatment of MDSCs from myeloma-challenged mice with Zoledronic acid (ZA), a potent inhibitor of bone resorption, inhibited the number of osteoclasts formed in MDSC cultures and the expansion of MDSCs and bone lesions in mice. Collectively, these data provide in vitro and in vivo evidence that tumor-induced MDSCs exacerbate cancer-associated bone destruction by directly serving as osteoclast precursors.  相似文献   

13.
We examined the severity of experimental colitis induced by dextran sulfate sodium (DSS) using immunologically manipulated mice. C57BL/6 mice showed more severe colitis than BALB/c mice, but mice of both strains recovered fully from the disease after the removal of DSS from their drinking water. The infiltrated cells at the lesions were mainly granulocytes in normal littermates. However, C.B-17 scid, IL-7Ralpha deficient, and TCR-Cbetadelta double-deficient mice showed severe colitis and did not recover from the disease even after the removal of DSS. It was found that the infiltrated cells at the lesions in the lethal strains were monocytes. Although both TCR-Cdelta(-/-) and TCR-Cbeta(-/-) mice showed severe colitis phenotypes, infiltration in the former is monocyte-dominant while that in the latter is granulocyte-dominant. Thus the type of cells that infiltrate at the lesions of DSS-induced experimental colitis may be controlled by functional T cell subsets. Immunohistological and RT-PCR analyses of the inflamed colon revealed that the murine homologue of human GROalpha released by some cells under the control of gammadeltaT cells is a possible candidate determining the severity of DSS-induced experimental colitis.  相似文献   

14.
The propensity of a range of parasitic helminths to stimulate a Th2 or regulatory cell-biased response has been proposed to reduce the severity of experimental inflammatory bowel disease. We examined whether infection with Schistosoma mansoni, a trematode parasite, altered the susceptibility of mice to colitis induced by dextran sodium sulfate (DSS). Mice infected with schistosome worms were refractory to DSS-induced colitis. Egg-laying schistosome infections or injection of eggs did not render mice resistant to colitis induced by DSS. Schistosome worm infections prevent colitis by a novel mechanism dependent on macrophages, and not by simple modulation of Th2 responses, or via induction of regulatory CD4+ or CD25+ cells, IL-10, or TGF-beta. Infected mice had marked infiltration of macrophages (F4/80+CD11b+CD11c(-)) into the colon lamina propria and protection from DSS-induced colitis was shown to be macrophage dependent. Resistance from colitis was not due to alternatively activated macrophages. Transfer of colon lamina propria F4/80+ macrophages isolated from worm-infected mice induced significant protection from colitis in recipient mice treated with DSS. Therefore, we propose a new mechanism whereby a parasitic worm suppresses DSS-induced colitis via a novel colon-infiltrating macrophage population.  相似文献   

15.
Yanaba K  Asano Y  Tada Y  Sugaya M  Kadono T  Sato S 《PloS one》2012,7(3):e34587

Background

Bortezomib is a proteasome inhibitor that has shown impressive efficacy in the treatment of multiple myeloma. In mice, the addition of dextran sulfate sodium (DSS) to drinking water leads to acute colitis that can serve as an experimental animal model for human ulcerative colitis.

Methodology/Principal Findings

Bortezomib treatment was shown to potently inhibit murine DSS-induced colitis. The attenuation of DSS-induced colitis was associated with decreased inflammatory cell infiltration in the colon. Specifically, bortezomib-treated mice showed significantly decreased numbers of CD4+ and CD8+ T cells in the colon and mesenteric lymph nodes. Bortezomib treatment significantly diminished interferon (IFN)-γ expression in the colon and mesenteric lymph nodes. Furthermore, cytoplasmic IFN-γ production by CD4+ and CD8+ T cells in mesenteric lymph nodes was substantially decreased by bortezomib treatment. Notably, bortezomib enhanced T cell apoptosis by inhibiting nuclear factor-κB activation during DSS-induced colitis.

Conclusions/Significance

Bortezomib treatment is likely to induce T cell death, thereby suppressing DSS-induced colitis by reducing IFN-γ production.  相似文献   

16.
Radiation-induced colitis is a common clinical problem after radiation therapy and accidental radiation exposure. Myeloid-derived suppressor cells (MDSCs) have immunosuppressive functions that use a variety of mechanisms to alter both the innate and the adaptive immune systems. Here, we demonstrated that radiation exposure in mice promoted the expansion of splenic and intestinal MDSCs and caused intestinal inflammation due to the increased secretion of cytokines. Depletion of monocytic MDSCs using anti-Ly6C exacerbated radiation-induced colitis and altered the expression of inflammatory cytokine IL10. Adoptive transfers of 0.5 Gy-derived MDSCs ameliorated this radiation-induced colitis through the production IL10 and activation of both STAT3 and SOCS3 signaling. Intestinal-inflammation recovery using 0.5 Gy-induced MDSCs was assessed using histological grading of colitis, colon length, body weight, and survival rate. Using in vitro co-cultures, we found that 0.5 Gy-induced MDSCs had higher expression levels of IL10 and SOCS3 compared with 5 Gy-induced MDSCs. In addition, IL10 expression was not enhanced in SOCS3-depleted cells, even in the presence of 0.5 Gy-induced monocytic MDSCs. Collectively, the results indicate that 0.5 Gy-induced MDSCs play an important immunoregulatory role in this radiation-induced colitis mouse model by releasing anti-inflammatory cytokines and suggest that IL10-overexpressing mMDSCs may be potential immune-therapy targets for treating colitis.Subject terms: Stress signalling, Super-resolution microscopy  相似文献   

17.
Sunrouge, an anthocyanin-rich tea, has similar levels of catechins as "Yabukita," the most popular green tea cultivar consumed in Japan. Green tea polyphenols (GTPs) have attracted interest due to their potent antioxidative activities combined with a lack of side effects in humans at normal consumption levels. However, we previously reported that high doses (0.5 and 1%) of dietary GTPs can result in deterioration of colitis and failed to prevent colon carcinogenesis in inflamed colons. In the present study, we determined the inhibitory effects of Sunrouge on colitis in dextran sodium sulfate (DSS)-treated and untreated control mice. Five-week-old female ICR mice were administered a single dose of Yabukita or Sunrouge (extracts in 1 mL distilled water) via a stomach tube for 3 weeks. After 1 week of treatment, the mice were divided into four groups (two Yabukita and two Sunrouge groups) and given drinking water with or without 3% DSS for 2 weeks, then they were euthanized. Those treated with DSS developed watery diarrhea and bloody stools, and showed body weight loss, spleen hypertrophy, and shortening of the colon, as well as deteriorations in survival rate, liver function, colon mucosal interleukin-1β level and expression of phase II detoxification enzyme mRNA. Sunrouge improved these DSS-induced symptoms, at least in part, whereas Yabukita showed either no effect or adverse effects in regard to some those parameters. It is suggested that the differences between Yabukita and Sunrouge on DSS-induced colitis might be due to the high levels of anthocyanins found in Sunrouge tea.  相似文献   

18.
Germ-free (GF) mice are highly susceptible to dextran sodium sulfate (DSS)-induced colitis in comparison to conventionalized (CVz) mice. It is hypothesized that degradation of DSS by intestinal microflora is involved in the susceptibility to DSS-induced colitis of GF mice. This study evaluates the ability of bacteria in mouse cecal contents (CC) to degrade DSS in vitro, and provides confirmatory evidence that DSS was not degraded when incubated with CC. Our results suggest that intestinal microflora do not contribute directly to the difference in susceptibility of GF mice to DSS-induced colitis through degradation.  相似文献   

19.
20.
This study investigated the potential role of the p70S6K1/HIF1α axis in the anti-inflammatory activities of pomegranate (Punica granatum L.) polyphenolics in dextran sodium sulfate (DSS)-induced colitis in Sprague–Dawley rats and in lipopolysaccharide (LPS)-treated CCD-18Co colon-myofibroblastic cells. Rats were administered either control (CT) or pomegranate beverage (PG), containing ellagic acid and ellagitannins, then exposed to three cycles of 3% DSS followed by a 2-week recovery period. PG protected against DSS-induced colon inflammation and ulceration (50% and 66.7%, P=.05 and .045, respectively), and decreased the Ki-67 proliferative index in the central and basal regions compared to the control. PG also significantly reduced the expression of proinflammatory cytokines (TNF-α and IL-1β), COX-2, and iNOS at mRNA and protein levels. In addition, the expression of p70S6K1 and HIF1α was reduced, while the tumor suppressor miR-145 was induced by PG. The intestinal microbiota of rats treated with PG showed a significant increase in Ruminococcaceae that include several butyrate producing bacteria (P=.03). In vitro, PG reduced the expression of p70S6K1 and HIF1α and induced miR-145 in a dose-dependent manner. The involvement of miR-145/p70S6K1 was confirmed by treating LPS-treated CCD-18Co cells with miR-145 antagomiR, where the pomegranate polyphenolics reversed the effects of the antagomiR for p70S6K1 mRNA and protein levels. These results suggest that pomegranate polyphenols attenuated DSS-induced colitis by modulating the miR-145/p70S6K/HIF1α axis, indicating potential use in therapeutic treatment of ulcerative colitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号