首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteoarthritis (OA) significantly influences the quality life of people around the world. It is urgent to find an effective way to understand the genetic etiology of OA. We used weighted gene coexpression network analysis (WGCNA) to explore the key genes involved in the subchondral bone pathological process of OA. Fifty gene expression profiles of GSE51588 were downloaded from the Gene Expression Omnibus database. The OA‐associated genes and gene ontologies were acquired from JuniorDoc. Weighted gene coexpression network analysis was used to find disease‐related networks based on 21756 gene expression correlation coefficients, hub‐genes with the highest connectivity in each module were selected, and the correlation between module eigengene and clinical traits was calculated. The genes in the traits‐related gene coexpression modules were subject to functional annotation and pathway enrichment analysis using ClusterProfiler. A total of 73 gene modules were identified, of which, 12 modules were found with high connectivity with clinical traits. Five modules were found with enriched OA‐associated genes. Moreover, 310 OA‐associated genes were found, and 34 of them were among hub‐genes in each module. Consequently, enrichment results indicated some key metabolic pathways, such as extracellular matrix (ECM)‐receptor interaction (hsa04512), focal adhesion (hsa04510), the phosphatidylinositol 3'‐kinase (PI3K)‐Akt signaling pathway (PI3K‐AKT) (hsa04151), transforming growth factor beta pathway, and Wnt pathway. We intended to identify some core genes, collagen (COL)6A3, COL6A1, ITGA11, BAMBI, and HCK, which could influence downstream signaling pathways once they were activated. In this study, we identified important genes within key coexpression modules, which associate with a pathological process of subchondral bone in OA. Functional analysis results could provide important information to understand the mechanism of OA.  相似文献   

2.

Background

Breast cancer and ovarian cancer are hormone driven and are known to have some predisposition genes in common such as the two well known cancer genes BRCA1 and BRCA2. The objective of this study is to compare the coexpression network modules of both cancers, so as to infer the potential cancer-related modules.

Methods

We applied the eigen-decomposition to the matrix that integrates the gene coexpression networks of both breast cancer and ovarian cancer. With hierarchical clustering of the related eigenvectors, we obtained the network modules of both cancers simultaneously. Enrichment analysis on Gene Ontology (GO), KEGG pathway, Disease Ontology (DO), and Gene Set Enrichment Analysis (GSEA) in the identified modules was performed.

Results

We identified 43 modules that are enriched by at least one of the four types of enrichments. 31, 25, and 18 modules are enriched by GO terms, KEGG pathways, and DO terms, respectively. The structure of 29 modules in both cancers is significantly different with p-values less than 0.05, of which 25 modules have larger densities in ovarian cancer. One module was found to be significantly enriched by the terms related to breast cancer from GO, KEGG and DO enrichment. One module was found to be significantly enriched by ovarian cancer related terms.

Conclusion

Breast cancer and ovarian cancer share some common properties on the module level. Integration of both cancers helps identifying the potential cancer associated modules.
  相似文献   

3.
This study performed the first microarray analysis of long-noncoding RNA (lncRNA) and mRNA expression profiles in human steroid-induced avascular necrosis of the femoral head (SAVNFH). Expression levels of lncRNAs and mRNAs in three human SAVNFH samples and three human femoral head fracture samples (controls) were detected using third-generation lncRNA microarrays (KangChen Biotech, Shanghai, China). The fold change, false discovery rate, and P value were utilized to filter genes with significant differential expression in the SAVNFH samples compared with the control samples. In total, there were 1179 upregulated and 3214 downregulated lncRNAs (P2. zerofold, P < 0.05). Meanwhile, 1092 upregulated and 565 downregulated mRNAs were found in the SAVNFH samples compared with the control samples. Then, quantitative real-time polymerase chain reaction was used to confirm the previous microarray results using 8 and 20 selected dysregulated lncRNAs and mRNAs, respectively, and the results generally confirmed the microarray findings. Finally, we used Gene Ontology (GO) and pathway analysis to investigate the functions of the altered mRNAs and their associated GO terms and biological pathways. The Immune system process term (GO:0002376) was the most significantly upregulated GO term, and the Regulation of blood coagulation term (GO:0030193) was the most significantly downregulated GO term in the biological process category for the SAVNFH samples. “Hematopoietic cell lineage - Homo sapiens (human) (Pathway ID: hsa04640)” and “Complement and coagulation cascades - Homo sapiens (human) (Pathway ID: hsa04610)” were the most significantly up- and downregulated pathways in the SAVNFH samples compared with the controls. In conclusion, the differential expression of lncRNAs and mRNAs may be correlated with the pathogenesis of SAVNFH, and these significantly dysregulated lncRNAs and mRNAs may function through networks or participate in several specific biological processes. Further research is needed to understand their exact functions and mechanisms in SAVNFH.  相似文献   

4.
Hypertrophic cardiomyopathy (HCM) is reported to be the most common genetic heart disease. To identify key module and candidate biomarkers correlated with clinical prognosis of patients with HCM, we carried out this study with co-expression analysis. To construct a co-expression network of hub genes correlated with HCM, the Weighted Gene Co-expression Network Analysis (WGCNA) was performed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed by Database for Annotation, Visualization and Integrated Discovery (DAVID). The protein-protein interaction network analysis of central genes was performed to recognize the interactions of central genes. Gene set enrichment analyses were carried out to discover the possible mechanisms involved in the pathways promoted by hub genes. To validate the hub genes, quantitative real-time polymerase chain reaction (RT-PCR) was performed. Based on the results of topological overlap measure based clustering, 2,351 differentially expressed genes (DEGs) were identified. Those genes were included in six different modules. Of these modules, the yellow and the blue modules showed a pivotal correlation with HCM. DEGs were enriched in immune system procedure associated GO terms and KEGG pathways. We identified nine hub genes (TYROBP, STAT3, CSF1R, ITGAM, SYK, ITGB2, LILRB2, LYN, and HCK) affected the immune system significantly. Among the genes we validated with RT-PCR, TYROBP, CSF1R, and SYK showed significant increasing expression levels in model HCM rats. In conclusion, we identified two modules and nine hub genes, which were prominently associated with HCM. We found that immune system may play a crucial role in the HCM. Accordingly, those genes and pathways might become therapeutic targets with clinical usefulness in the future.  相似文献   

5.
Stroke is one of the most destructive complications of sickle cell disease (SCD), and SCD is also the most common cause of childhood stroke. Sickle cell stroke is complex and has a genetic endothelial basis. Here, we further investigated this genetic basis using weighted gene coexpression network analysis. This systems biology approach revealed the correlation between coexpressed gene modules and sickle stroke risk. The pink module was significantly correlated with stroke risk and genes in this module were mainly related to GO:0044877 (protein-containing complex binding). In addition hub genes were identified through protein-protein interaction enrichment analysis, including CXCR7, VCAM1, CD44, BMP2, SMAD3, BCL2L1, ITPR2, ITPR3, etc. These hub genes were significantly enriched for three Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways including “gastric acid secretion,” “pathways in cancer,” and “TGF- β signaling pathway.” Altogether, our results based on this innovative method provided some novel understanding of the pathology of sickle cell stroke. Hub genes identified in this study could be potential targets for screening and prevention of stroke risk in SCD children.  相似文献   

6.
SNP-based gene-set enrichment analysis from single nucleotide polymorphisms, or GSEA-SNP, is a tool to identify candidate genes based on enrichment analysis of sets of genes rather than single SNP associations. The objective of this study was to identify modest-effect genes associated with Mycobacterium avium subsp. paratuberculosis (Map) tissue infection or fecal shedding using GSEA-SNP applied to KEGG pathways or Gene Ontology (GO) gene sets. The Illumina Bovine SNP50 BeadChip was used to genotype 209 Holstein cows for the GSEA-SNP analyses. For each of 13,744 annotated genes genome-wide located within 50 kb of a Bovine SNP50 SNP, the single SNP with the highest Cochran-Armitage Max statistic was used as a proxy statistic for that gene’s strength of affiliation with Map. Gene-set enrichment was tested using a weighted Kolmogorov-Smirnov-like running sum statistic with data permutation to adjust for multiple testing. For tissue infection and fecal shedding, no gene sets in KEGG pathways or in GO sets for molecular function or cellular component were enriched for signal. The GO biological process gene set for positive regulation of cell motion (GO:0051272, q = 0.039, 5/11 genes contributing to the core enrichment) was enriched for Map tissue infection, while no GO biological process gene sets were enriched for fecal shedding. GSEA-SNP complements traditional SNP association approaches to identify genes of modest effects as well as genes with larger effects as demonstrated by the identification of one locus that we previously found to be associated with Map tissue infection using a SNP-by-SNP genome-wide association study.  相似文献   

7.
Recently, computational approaches integrating copy number aberrations (CNAs) and gene expression (GE) have been extensively studied to identify cancer-related genes and pathways. In this work, we integrate these two data sets with protein-protein interaction (PPI) information to find cancer-related functional modules. To integrate CNA and GE data, we first built a gene-gene relationship network from a set of seed genes by enumerating all types of pairwise correlations, e.g. GE-GE, CNA-GE, and CNA-CNA, over multiple patients. Next, we propose a voting-based cancer module identification algorithm by combining topological and data-driven properties (VToD algorithm) by using the gene-gene relationship network as a source of data-driven information, and the PPI data as topological information. We applied the VToD algorithm to 266 glioblastoma multiforme (GBM) and 96 ovarian carcinoma (OVC) samples that have both expression and copy number measurements, and identified 22 GBM modules and 23 OVC modules. Among 22 GBM modules, 15, 12, and 20 modules were significantly enriched with cancer-related KEGG, BioCarta pathways, and GO terms, respectively. Among 23 OVC modules, 19, 18, and 23 modules were significantly enriched with cancer-related KEGG, BioCarta pathways, and GO terms, respectively. Similarly, we also observed that 9 and 2 GBM modules and 15 and 18 OVC modules were enriched with cancer gene census (CGC) and specific cancer driver genes, respectively. Our proposed module-detection algorithm significantly outperformed other existing methods in terms of both functional and cancer gene set enrichments. Most of the cancer-related pathways from both cancer data sets found in our algorithm contained more than two types of gene-gene relationships, showing strong positive correlations between the number of different types of relationship and CGC enrichment -values (0.64 for GBM and 0.49 for OVC). This study suggests that identified modules containing both expression changes and CNAs can explain cancer-related activities with greater insights.  相似文献   

8.
Lung adenocarcinomas injured greatly on the people worldwide. Although clinic experiments and gene profiling analyses had been well performed, to our knowledge, systemic coexpression analysis of human genes for this cancer is still limited to date. Here, using the published data GSE75037, we built the coexpression modules of genes by Weighted Gene Co-Expression Network Analysis (WGCNA), and investigated function and protein–protein interaction network of coexpression genes by Database for Annotation, visualization, and Integrated Discovery (DAVID) and String database, respectively. First, 11 coexpression modules were conducted for 5,000 genes in the 83 samples recently. Number of genes for each module ranged from 90 to 1,260, with the mean of 454. Second, interaction relationships of hub-genes between pairwise modules showed great differences, suggesting relatively high scale independence of the modules. Third, functional enrichment of the coexpression modules showed great differences. We found that genes in modules 8 significantly enriched in the biological process and/or pathways of cell adhesion, extracellular matrix (ECM)–receptor interaction, focal adhesion, and PI3K-Akt signaling pathway, and so forth. It was inferred as the key module underlying lung adenocarcinomas. Furthermore, PPI analysis revealed that the genes COL1A1, COL1A2, COL3A1, CTGF, and BGN owned the largest number of adjacency genes, unveiling that they may functioned importantly during the occurrence of lung adenocarcinomas. To summary, genes involved in cell adhesion, ECM–receptor interaction, focal adhesion, and PI3K-Akt signaling pathway play crucial roles in human lung adenocarcinomas.  相似文献   

9.
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease with multiple molecular mechanisms. To investigate and contrast the molecular processes differing between bronchiolitis and emphysema phenotypes of COPD, we downloaded the GSE69818 microarray data set from the Gene Expression Omnibus (GEO), which based on lung tissues from 38 patients with emphysema and 32 patients with bronchiolitis. Then, weighted gene coexpression network analysis (WGCNA) and differential coexpression (DiffCoEx) analysis were performed, followed by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment analysis (KEGG) analysis. Modules and hub genes for bronchiolitis and emphysema were identified, and we found that genes in modules linked to neutrophil degranulation, Rho protein signal transduction and B cell receptor signalling were coexpressed in emphysema. DiffCoEx analysis showed that four hub genes (IFT88, CCDC103, MMP10 and Bik) were consistently expressed in emphysema patients; these hub genes were enriched, respectively, for functions of cilium assembly and movement, proteolysis and apoptotic mitochondrial changes. In our re‐analysis of GSE69818, gene expression networks in relation to emphysema deepen insights into the molecular mechanism of COPD and also identify some promising therapeutic targets.  相似文献   

10.
《Genomics》2020,112(1):837-847
BackgroundGlioma is the most lethal nervous system cancer. Recent studies have made great efforts to study the occurrence and development of glioma, but the molecular mechanisms are still unclear. This study was designed to reveal the molecular mechanisms of glioma based on protein-protein interaction network combined with machine learning methods. Key differentially expressed genes (DEGs) were screened and selected by using the protein-protein interaction (PPI) networks.ResultsAs a result, 19 genes between grade I and grade II, 21 genes between grade II and grade III, and 20 genes between grade III and grade IV. Then, five machine learning methods were employed to predict the gliomas stages based on the selected key genes. After comparison, Complement Naive Bayes classifier was employed to build the prediction model for grade II-III with accuracy 72.8%. And Random forest was employed to build the prediction model for grade I-II and grade III-VI with accuracy 97.1% and 83.2%, respectively. Finally, the selected genes were analyzed by PPI networks, Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and the results improve our understanding of the biological functions of select DEGs involved in glioma growth. We expect that the key genes expressed have a guiding significance for the occurrence of gliomas or, at the very least, that they are useful for tumor researchers.ConclusionMachine learning combined with PPI networks, GO and KEGG analyses of selected DEGs improve our understanding of the biological functions involved in glioma growth.  相似文献   

11.
12.
13.
本研究旨在利用生物信息学方法构建经铜诱导的ATP7B基因敲除HepG2细胞系的转录调控网络。探讨关键转录因子在肝豆状核变性发生、发展中的潜在作用机制。收集公共基因表达数据库(gene expression omnibus, GEO)中包含野生型、ATP7B基因敲除型、铜诱导的野生型和铜诱导的ATP7B基因敲除型HepG2细胞系数据。筛选由铜诱导产生的差异表达基因(differentially expressed genes,DEGs)后进行基因本体论(gene ontology,GO)、京都基因和基因组百科全书(Kyoto encyclopedia of genes and genomes, KEGG)富集分析。基于蛋白相互作用网络,识别疾病关键基因和功能模块,并对关键功能模块中的基因进行富集分析。最后,构建转录调控网络,筛选核心转录因子。共筛选出1 034个差异表达基因,其中上调525个,下调509个。上、下调关键功能模块分别包括了3785个和3931个基因。关键功能模块中的基因主要定位于细胞-基质连接、染色体、剪接复合体、核糖体等区域,共同参与了mRNA加工、组蛋白修饰、RNA剪切...  相似文献   

14.
15.
16.
Dilated cardiomyopathy (DCM) is a heart disease that injured greatly to the people wordwide. Systemic co-expression analysis for this cancer is still limited, although massive clinic experiments and gene profiling analyses had been well performed previously. Here, using the public RNA-Seq data “GSE116250” and gene annotation of Ensembl database, we built the co-expression modules for DCM by Weighted Gene Co-Expression Network Analysis, and investigated the function enrichment and protein-protein interaction (PPI) network of co-expression genes of each module by Database for Annotation, Visualization, and Integrated Discovery and Search Tool for the Retrieval of Interacting Genes/Proteins database, respectively. First, 5,000 genes in the 37 samples were screened and 11 co-expression modules were conducted. The number of genes for each module ranged from 77 to 936, with a mean of 455. Second, interaction relationships of hub-genes between pairwise modules showed great differences, suggesting relatively high-scale independence of the modules. Third, functional enrichments of the co-expression modules exhibited great differences. We found that genes in module 3 were significantly enriched in the pathways of focal adhesion and ubiquitin-mediated proteolysis. This module was inferred as the key module involved in DCM. In addition, PPI analysis revealed that the genes HSP90AA1, CTNNB1, MAPK1, GART, and PPP2CA owned the largest number of adjacency genes, unveiling that they may function importantly during the occurrence of DCM. Focal adhesion and ubiquitin-mediated proteolysis play important roles in human DCM.  相似文献   

17.
梁爽  凡奎  张燕  谢杨眉 《生物信息学》2020,18(3):163-168
为了寻找诊断、鉴别IgA肾病(IgAN)和膜性肾病(MN)的血液特异性标记物,利用公共数据库中的IgAN和MN患者的外周血单核细胞(PBMCs)的转录组表达谱数据集识别特异性生物标记物,为诊断和鉴别提供简便、可靠的依据补充。从公共基因表达数据库(GEO)下载IgAN患者组(n=15)和MN患者组(n=8)芯片数据集,筛选前250个差异表达基因(DEGs)。通过分析筛选关键基因和途径,进行基因本体(GO)富集分析、京都基因与基因组百科全书(KEGG)通路分析和蛋白质与蛋白质相互作用关系(PPI)分析等进一步了解DEGs。通过分析共发现75个显著DEGs,其中73个上调基因,2个下调基因。GO富集分析的生物学过程(BP)主要包括蛋白质转运、内溶酶体到溶酶体转运、趋化因子介导的信号通路作用等。显著富集差异表达基因KEGG通路分析包括Endocytosis和Hepatitis B的相关信号通路。PPI筛选出EPS15、STAT4、CCL2、SUN2、SEC24C、SEC31A、GOLGB1、F2R,RAB12和PTK2B等关键基因。成功筛选出核心差异表达基因,为IgAN和MN的诊断和鉴别提供简便、可靠的依据补充,甚至提供治疗的新靶点。  相似文献   

18.
A large volume of honey bee (Apis mellifera) tag-seq was obtained to identify differential gene expression via Solexa/lllumina Digital Gene Expression tag profiling (DGE) based on next generation sequencing. In total, 4,286,250 (foragers) and 3,422,327 (nurses) clean tags were sequenced, 24,568 (foragers) and 13,134 (nurses) distinct clean tags could not be match to the reference database, and 7508 and 6875 mapped genes were detected in foragers and nurses respectively. 7045 genes were found differentially expressed between foragers and nurses. Of those genes, 1621genes had significantly different expression, that is, they showed an expression ratio (foragers/nurses) of more than 2 and FDR (False Discovery Rate) of less than 0.001. We identified 101 genes that were uniquely expressed in foragers, and 9 genes that were only expressed in nurses. We performed the Gene Ontology (GO) category and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and found 415 genes with annotation terms linked to the GO cellular component category. 200 components of KEGG pathways were obtained, including 21 signaling pathways. The PPAR signaling pathway was the most highly enriched, with the lowest Q-value.  相似文献   

19.
20.
Neuropathic pain (NP) is a common pathological pain state with limited effective treatments. This study was designed to identify potential mechanisms and candidate genes using gene expression–based genome-wide association study (eGWAS). All NP-related microarray experiments were obtained from Gene Expression Omnibus and ArrayExpress. Significantly dysregulated genes were identified between experimental and untreated groups, and the number of microarray experiments in which each gene was dysregulated was calculated. Significantly dysregulated genes were ranked according to P values of the chi-square test. Using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes database, we performed functional and pathway enrichment analysis. Protein-protein interaction (PPI) network and module analysis was performed using Cytoscape software. A total of 115 candidate genes were identified from 19 independent microarray experiments by eGWAS based on the Bonferroni threshold ( P < 2.97 × 10 −6). Immune and inflammatory responses, and complement and coagulation cascades, were respectively the most enriched biological process and pathways for candidate genes. The hub genes with highest connectivity in PPI network and two modules Ccl2 and Jun, and Ctss application of the eGWAS methodology can identify mechanisms and candidate genes associated with NP. Our results support the validity and prevalence of inflammatory and immune mechanisms across different NP models, and Ccl2, Jun, and Ctss may be the hub genes for NP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号