共查询到20条相似文献,搜索用时 0 毫秒
1.
Xiao-Jun Yu Xin-Zhen Guo Chao Li Yang Chong Tie-Nan Song Jian-Feng Pang Ming Shao 《Journal of cellular biochemistry》2019,120(3):3727-3735
Osteosarcoma is the most common malignant bone cancer that mainly affects children and young adults. Recently, the NAD+-dependent deacetylase, sirtuin 1 (SIRT1), has been reported to play a key role in the development of malignant tumors. The study aimed to investigate the role of SIRT1 in osteosarcoma and explore its underlying oncogenic mechanisms. The prognostic value of SIRT1 in osteosarcoma was assessed through detection of SIRT1 expression based on osteosarcoma biopsy tissue. Then, to further investigate the effect of SIRT1 in osteosarcoma, osteosarcoma cells were treated with small interfering RNA SIRT1 and overexpressed SIRT1 to detect the cell migration, invasion, and epithelial-mesenchymal transition (EMT). The levels of SIRT1 expression were significantly higher in osteosarcoma tissues than those in adjacent normal tissues, and the SIRT1 protein level may be coupled with metastatic and poor prognosis risk in patients with osteosarcoma. Moreover, SIRT1 silencing inhibited the migration as well as invasion ability of osteosarcoma cells in vitro, and SIRT1 upregulation reversed those effects. Finally, we found that SIRT1-ZEB1-positive feedback enhanced the EMT process and metastasis of osteosarcoma. Altogether, the results of the current study revealed that high levels of SIRT1 might be a biomarker for a high metastatic rate in patients with osteosarcoma, which suggested that inhibition of SIRT1 might be promising for the therapeutics of osteosarcoma. 相似文献
2.
Yinyan Li Xu Han Qiaobei Li Chunyan Wang Zhe Lou Xuemei Wang 《Journal of cellular biochemistry》2019,120(6):10633-10642
Breast cancer (BCa) is the most common malignant tumor in females. Long noncoding RNAs (lncRNAs) are deregulated in many types of human cancers, including BCa. The purpose of the present study was to examine the expression profile and biological role of HOXD cluster antisense RNA 1 (HOXD-AS1) in BCa. Our results revealed that HOXD-AS1 was upregulated in BCa tissues and cell lines, and high HOXD-AS1 expression was correlated with aggressive clinicopathological characteristics of BCa patients. Further gain-of-function and loss-of-function analysis showed that HOXD-AS1 overexpression promoted, whereas HOXD-AS1 knockdown inhibited BCa cell proliferation, cell cycle progression, migration, and invasion, indicating that HOXD-AS1 may function as a novel oncogene in BCa. Mechanistically, HOXD-AS1 could activate epithelial-mesenchymal transition (EMT) in BCa cells. We further proved that HOXD-AS1 might serve as a competing endogenous RNA of miR-421 in BCa cells, and miR-421 was downregulated and negatively correlated with HOXD-AS1 expression in BCa tissues. Besides, we confirmed that SOX4, a master regulator of EMT, was a direct target gene of miR-421. Further, rescue experiments suggested that miR-421 overexpression partly abrogated the oncogenic role of HOXD-AS1 in BCa cells. Therefore, we shed light on that HOXD-AS1/miR-421/SOX4 axis may be considered as a novel therapeutic target for the treatment of BCa patients. 相似文献
3.
Xuefeng Zhao Yan Xu Xiaoya Sun Yuan Ma Yan Zhang Yadong Wang Hongya Guan Zhen Jia Yuebai Li Yisheng Wang 《Journal of cellular biochemistry》2019,120(4):5495-5504
MicroRNA-17-5p (miR-17-5p) and epithelial-mesenchymal transition (EMT) have been reported to participate in the development and progression of multiple cancers. However, the relationship between the miR-17-5p and EMT in osteosarcoma (OS) is still poorly understood. This study was to investigate the effects of the miR-17-5p and its potential mechanism in regulating proliferation, apoptosis, and EMT of human OS. Quantitative real-time PCR was used to detect the miR-17-5p and SRC kinase signaling inhibitor 1 (SRCIN1) messenger RNA expression in OS specimens and cell lines. After transfection with miR-17-5p inhibitors, proliferation, apoptosis, migration, and invasion of OS cells were assessed by using the Cell Counting Kit-8, the annexin V-FITC apoptosis, wound-healing, and transwell assays. The SRCIN1 was validated as a target of the miR-17-5p through bioinformatics algorithms and luciferase reporter assay. Moreover, the expression of EMT markers, E-cadherin, N-cadherin, and Snail was identified by the Western blot analysis. MiR-17-5p was significantly upregulated in OS tumor samples and cell lines. It inhibited proliferation and EMT, and promoted apoptosis in OS. The SRCIN1 was identified as a direct target of the miR-17-5p. Silenced miR-17-5p could change the expression of EMT markers, such as upregulating the expression of E-cadherin, and downregulating the expression of N-cadherin and Snail through targeting the antioncogenic SRCIN1. These findings suggest that the miR-17-5p promotes cell proliferation, and EMT in human OS by directly targeting the SRCIN1, and reveal a branch of the miR-17-5p/SRCIN1/EMT signaling pathway involved in the progression of OS. 相似文献
4.
Xi Chen Yu Zhou Shuping Liu Desheng Zhang Xi Yang Qing Zhou Yueming Song Yuehong Liu 《Journal of cellular biochemistry》2019,120(2):2569-2575
TP73 antisense RNA 1 (TP73-AS1), a novel long noncoding RNA (lncRNA), has been suggested to be deregulated in various human cancers and serve as a tumor suppressor or promoter, depending on tumor types. The role of TP73-AS1 in osteosarcoma is still unknown. In our results, TP73-AS1 was highly expressed in osteosarcoma tissue samples and cell lines compared with matching adjacent nontumor tissue specimens and a normal human osteoblast cell line, respectively. Moreover, high expression of TP73-AS1 was statistically associated with advanced Enneking stage, large tumor size, present distant metastasis, and poor histological grade, while exhibiting no statistical association with age, sex, and tumor site. The survival analyses showed that patients with osteosarcoma with high expression of TP73-AS1 obviously had lower overall survival than osteosarcoma patients with low expression of TP73-AS1, and high expression of TP73-AS1 was an independent poor prognostic factor for osteosarcoma patients. The experiments in vitro indicated that inhibition of TP73-AS1 expression depressed osteosarcoma cell viability, migration, and invasion, and arrested cell cycle. In conclusion, TP73-AS1 serves as oncogenic lncRNA participated in osteosarcoma progression. 相似文献
5.
Lihua Yan Xiangkun Wu Yongxi Liu Wenfeng Xian 《Journal of cellular biochemistry》2019,120(5):7248-7256
Long noncoding RNA (lncRNA) Linc00511 is a novel lncRNA, and it was reported to play important roles in the progression and carcinogenesis of several tumors. However, the expression and biological roles of Linc00511 in osteosarcoma were still unknown. In this research, we showed that the expression of Linc00511 was upregulated in osteosarcoma samples and cell lines. Ectopic expression of Linc00511 promoted osteosarcoma cell growth, colony formation, and migration. Moreover, overexpression of Linc00511 enhanced the epithelial-mesenchymal transition progression in osteosarcoma cell. In addition, we showed that elevated expression of Linc00511 suppressed microRNA-765 (miR-765) expression and promoted apurinic/apyrimidinic endonuclease 1 (APE1) expression in osteosarcoma cell. The expression of miR-765 was downregulated in osteosarcoma cells and samples and was negatively related to Linc00511 expression in osteosarcoma tissues. Ectopic expression of miR-765 inhibited osteosarcoma cell growth and migration. Furthermore, we showed that Linc00511 overexpression promoted MG-63 cells proliferation, colony formation, and migration via downregulation of miR-765. These results suggested that Linc00511 played as an oncogene in the development of osteosarcoma. 相似文献
6.
Jing Ling Yu Sun Jun Pan Huan Wang Zhenni Ma Jie Yin Zhaohua Bao Huilin Yang Ling Liu 《Journal of cellular biochemistry》2019,120(9):15971-15979
Endothelial cells (ECs), as a tumor niche cell, generate and secrete Von Willebrand factor (VWF) that is linked to osteosarcoma (OS) progression. However, the role and regulatory mechanisms of VWF that underpin OS progression remain unclear. Here, using a coculture system ex vivo, we showed that ECs promoted the epithelial-mesenchymal transition (EMT) process in OS cells via enhanced VWF secretion. VWF secreted by ECs directly contributed to OS EMT and metastasis by activating NF-κB signaling. In addition, OS cells exerted a feedback effect on ECs to promote VWF release via activation of phospholipase D 1 signaling, through which enhanced VWF secretion results in further tumor deterioration. To conclude, ECs served as a modulator and an effector of OS, accelerating OS exacerbation by VWF release. 相似文献
7.
8.
Wei-Ling Lv Qian Liu Ji-Hong An Xiao-Yong Song 《Journal of cellular physiology》2019,234(12):23169-23175
Scutellarin, an active component of flavonoid, displays a variety of physiological actions and has been applied for the treatment of diverse diseases including hypertension and cerebral infarction as well as cerebral thrombosis. In recent time, Scutellarin has been demonstrated to possess the anticancer activity. But the biological significance of Scutellarin in bladder cancer (BC) remains to be elucidated. In the current study, we explored the specific effect of Scutellarin on BC progression. We found that Scutellarin inhibited hypoxia-induced BC cell migration and invasion in vitro as well as suppressed hypoxia-induced BC metastasis in vivo. Moreover, Scutellarin significantly reversed hypoxia-promoted epithelial-mesenchymal transition (EMT) in BC cells and the PI3K/Akt and MAPK pathways were implicated in the suppressive effect. Taken together, we suggested the potential value of Scutellarin as a novel anticancer agent for BC treatment. 相似文献
9.
LncRNA PTCSC3 inhibits triple-negative breast cancer cell proliferation by downregulating lncRNA H19
Ning Wang Mingsheng Hou Ying Zhan Xiaobin Sheng 《Journal of cellular biochemistry》2019,120(9):15083-15088
Long noncoding RNA (lncRNA) PTCSC3 (hereafter PTCSC3 is used to represent lncRNA PTCSC3) inhibits glioma and thyroid cancer, indicating its potential tumor suppression function in other types of cancers. We explored the potential involvement of PTCSC3 in triple-negative breast cancer (TNBC). In the current study, we found that PTCSC3 was downregulated in tumor tissues of patients with TNBC. PTCSC3 expression was positively correlated with plasma levels of PTCSC3. LncRNA H19 was upregulated and was inversely correlated with PTCSC3 in tumor tissues. PTCSC3 overexpression led to downregulated H19 in TNBC cells, while H19 overexpression did not affect PTCSC3 expression. PTCSC3 inhibited and H19 promoted proliferation of TNBC cells. H19 overexpression attenuated the effects of PTCSC3 overexpression. Cancer cell migration and invasion were not significantly affected by PTCSC3 overexpression. Therefore, lncRNA PTCSC3 inhibits TNBC cell proliferation by downregulating lncRNA H19. 相似文献
10.
11.
Xiaowen Liu 《Cell cycle (Georgetown, Tex.)》2016,15(24):3471-3481
Biguanides, including metformin (widely used in diabetes treatment) and phenformin, are AMP-activated protein kinase (AMPK) activators and potential drugs for cancer treatment. A more in-depth understanding of how cancer cells adapt to biguanide treatment may provide important therapeutic implications to achieve more effective and rational cancer therapies. NBR2 is a glucose starvation-induced long non-coding RNA (lncRNA) that interacts with AMPK and regulates AMPK activity upon glucose starvation. Here we show that phenformin treatment induces NBR2 expression, and NBR2 deficiency sensitizes cancer cells to phenformin-induced cell death. Surprisingly, unlike glucose starvation, phenformin does not induce NBR2 interaction with AMPK, and correspondingly, NBR2 deficiency does not affect phenformin-induced AMPK activation. We further reveal that NBR2 depletion attenuates phenformin-induced glucose transporter GLUT1 expression and glucose uptake. GLUT1 deficiency sensitizes cancer cells to phenformin-induced cell death, whereas GLUT1 restoration in NBR2 deficient cells rescues the increased cell death upon phenformin treatment. Together, the results of our study reveal that NBR2-GLUT1 axis may serve as an adaptive response in cancer cells to survive in response to phenformin treatment, and identify a novel mechanism coupling lncRNA to biguanide-mediated biology. 相似文献
12.
13.
The lncRNA HNF1A‐AS1 is a negative prognostic factor and promotes tumorigenesis in osteosarcoma 下载免费PDF全文
Lijun Cai Jinhan Lv Yinquan Zhang Junhong Li Yinong Wang Huilin Yang 《Journal of cellular and molecular medicine》2017,21(11):2654-2662
Recent studies have revealed that long noncoding RNA HNF1A‐antisense 1 (HNF1A‐AS1) plays an important role in the development of several human malignancy entities. However, the expression and function of HNF1A‐AS1 in the carcinogenesis and development of osteosarcoma remains unknown. In this study, we detected the HNF1A‐AS1 levels in human osteosarcoma tissues and cell lines by quantitative real‐time polymerase chain reaction (qRT‐PCR), and investigated its role in osteosarcoma by using in vitro assays. Our study showed that HNF1A‐AS1 expression was significantly up‐regulated in human osteosarcoma tissues and cell lines compared with their normal counterparts, and its expression level was positively correlated with the distance metastasis (P = 0.009) and tumour stage (P = 0.019). Moreover, Kaplan–Meier curves with the log‐rank test showed that higher expression of HNF1A‐AS1 conferred a significantly poorer survival and multivariate Cox proportional hazards analysis revealed that HNF1A‐AS1 was an independent risk factor of overall survival. In addition, the expression of HNF1A‐AS1 in serum is correlated with patients’ status and receiver operating characteristic (ROC) curve analysis demonstrated that HNF1A‐AS1 could distinguish patients with osteosarcoma from healthy individuals (the area under curve 0.849, P < 0.001). Furthermore, in vitro knockdown of HNF1A‐AS1 by siRNA significantly inhibited cell proliferation and G1/S transition, and suppressed migration and invasion by reducing the epithelial‐mesenchymal transition (EMT) program in osteosarcoma cells. Taken together, our data suggested that HNF1A‐AS1 is a novel molecule involved in osteosarcoma progression, which may provide as a potential diagnostic, prognostic biomarker and therapeutic target. 相似文献
14.
Qiqi Duan Guorong Wang Min Wang Caifeng Chen Mengdi Zhang Meng Liu Yongping Shao Yan Zheng 《Journal of cellular biochemistry》2020,121(11):4580-4589
Long non-coding RNAs (LncRNAs) play essential roles in the development of various diseases including hepatic carcinoma, melanoma, and psoriasis. Meanwhile, lncRNA-RP6-65G23.1 was upregulated in psoriasis. However, it is still unclear whether lncRNA-RP6-65G23.1 expression is upregulated and contributes to keratinocytes proliferation and apoptosis, and which mechanisms are responsible for these processes. The aims of this study are to address these issues. RP6-65G23.1 was significantly upregulated in M5-stimulated keratinocytes and stimulated the proliferation and inhibited the apoptosis of HaCaT cells. Knockdown of RP6-65G23.1 resulted in defects of growth and increased rates of apoptosis in HaCaT cells, while overexpression of RP6-65G23.1 manifested the opposite effects. Consistently, the expression of antiapoptotic proteins Bcl-xl and Bcl2 were decreased in RP6-65G23.1-knockdown cells but elevated in RP6-65G23.1 overexpression cells. In addition, RP6-65G23.1 depletion blunted the activity of extracellular regulated kinase 1/2 (ERK1/2) and AKT signaling pathways and induced G1/S-growth arrest. By contrast, overexpression of RP6-65G23.1 activates the ERK1/2 and AKT signaling pathways and inhibits the expression of p21 and p27 in an AKT-dependent manner leading to promote the G1/S progression. Our results suggested that lncRNA-RP6-65G23.1 would contribute to the pathogenesis of psoriasis by regulating the proliferation and apoptosis of keratinocytes via the p-ERK1/2 and p-AKT pathways. 相似文献
15.
Feng Liu Siqi Zhang Min Yin Lihua Guo Mingzhu Xu Yonggang Wang 《Journal of cellular biochemistry》2019,120(2):2039-2046
Hypoxia is a universal characteristic of solid tumor and involving cancer metastasis via epithelial-mesenchymal transition (EMT). Nobiletin (3′,4′,5,6,7,8-hexamethoxyflavone), a dietary polymethoxylated flavonoid found in citrus fruits, has been reported to have anticancer effects. However, the possible role of nobiletin in renal cell carcinoma (RCC) remains unclear. Thus, the aim of this study was to identify the effect of nobiletin on hypoxia-induced EMT in RCC cells. We found that nobiletin significantly inhibited the migration and invasion induced by hypoxia in RCC cells. In addition, nobiletin reversed the hypoxia-induced EMT process in RCC cells. Furthermore, nobiletin suppressed the activation of NF-κB and Wnt/β-catenin signaling pathways in hypoxia-stimulated RCC cells. In conclusion, these findings demonstrate that nobiletin inhibits hypoxia-induced EMT in human RCC cells via the inactivation of the NF-κB and Wnt/β-catenin signaling pathways. 相似文献
16.
17.
18.
目的:观察降钙素基因相关肽(CGRP)对大鼠肺泡上皮细胞间质转分化(EMT)的作用并探讨其机制。方法:实验设Control组、TGF-β1(5 ng/ml)、CGRP (1、10、100 nmol/L)组、CGRP8-37(1 μmol/L)+CGRP (100 nmol/L)组。每组设9个复孔。细胞分别用CGRP或加CGRP8-37预处理1 h,再用转化生长因子β1(TGF-β1)处理48 h。MTT法检测大鼠肺泡上皮Ⅱ型细胞(RLE-6TN细胞)活性。分别采用Real-time PCR和Western blot检测细胞E-cadherin、α-SMA、eIF3a、Notch1和collagen Ⅲ mRNA及蛋白表达。结果:与TGF-β1(5 ng/ml)相比,不同剂量CGRP (1、10、100 nmol/L)均可明显提高RLE-6TN细胞活性,显著抑制eIF3a、Notch1、α-SMA及collagen Ⅲ胶原的表达,上调E-cadherin的表达,而CGRP的这些作用可以被CGRP阻断剂CGRP8-37所取消。结论:CGRP对EMT具有一定的抑制作用,其机制可能与其抑制Notch1、eIF3a表达有关。 相似文献
19.
Gastric cancer (GC) is one of the most common malignancies and a leading cause of cancer-related death worldwide. Accumulating evidence reported that microRNA (miR)-133a was involved in GC. This study aimed to investigate the function and mechanism of miR-133a in the development and progression of GC. The expression of miR-133a and presenilin 1 (PSEN1) in two GC cell lines, SGC-7901 and BGC-823, were inhibited and overexpressed by transient transfections. Thereafter, cell viability, migration, and apoptosis were measured by trypan blue exclusion assay, transwell migration assay, and flow cytometry assay, respectively. Dual-luciferase reporter assay was conducted to verify whether PSEN1 was a direct target of miR-133a. Furthermore, quantitative real-time polymerase chain reaction and Western blot analysis were mainly performed to assess the expression changes of epithelial-mesenchymal transition (EMT)-associated proteins, apoptosis-related proteins, and Notch pathway proteins. MiR-133a inhibitor significantly increased cell viability and migration, while miR-133a mimic decreased cell viability, migration, and induced apoptosis. miR-133a suppression accelerated transforming growth factor-β1 (TGF-β1)-induce EMT, as evidenced by upregulation of E-cadherin, and downregulation of N-cadherin, vimentin, and Slug. Of contrast, miR-133a overexpression blocked TGF-β1-induce EMT by altering these factors. PSEN1 was a direct target of miR-133a, and suppression of PSEN1 abolished the promoting functions of miR-133 suppression on cell growth and metastasis. Moreover, PSEN1 inhibition decreased Notch 1, Notch 2, and Notch 3 protein expressions. This study demonstrates an antigrowth and antimetastasis role of miR-133a in GC cells. Additionally, miR-133a acts as a tumor suppressor may be via targeting PSEN1. 相似文献
20.
Rui Deng Fang-Yi Fan Hai Yi Fang Liu Guang-Cui He Hao-Ping Sun Yi Su 《Journal of cellular biochemistry》2019,120(5):8144-8153
Long noncoding RNAs (lncRNA) are emerging as integral functional and regulatory components in the development of different diseases including cancer. Maternally expressed gene 3 (MEG3), is a lncRNA, that has a depressed expression in multiple tumor types, including T-cell lymphoblastic lymphoma (T-LBL). However, the molecular mechanisms that regulate the tumorigenic functions of MEG3 in T-LBL remain largely unknown. In this study, we aimed to discover and identify the function of MEG3 in T-LBL tumorigenesis, epithelial-mesenchymal transition (EMT) and drug resistance, and explore their mechanisms of action. Knockdown MEG3 promoted the proliferation, migration, invasion, and drug resistance of T-LBL cells while overexpression of MEG3 gets the opposite results. The mechanism study showed that decreased MEG3 expression in T-LBL cells could activate PI3K/mTOR signaling pathways, increase the expression of p-glycoprotein and affect the expression of EMT markers for transforming to mesenchymal cells in vitro and in vivo. Together, these results indicate that MEG3 could inhibit the migration, invasion, and drug resistance in T-LBL cells by suppression of the PI3K/mTOR pathway. MEG3 might be a potential target, through which poor prognosis with high recurrence and drug resistance of T-LBL in a clinical setting could be reversed. 相似文献