首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, we discovered that mouse oocyte maturation was inhibited by simulated microgravity via disturbing spindle organization. We cultured mouse oocytes under microgravity condition simulated by NASA''s rotary cell culture system, examined the maturation rate and observed the spindle morphology (organization of cytoskeleton) during the mouse oocytes meiotic maturation. While the rate of germinal vesicle breakdown did not differ between 1 g gravity and simulated microgravity, rate of oocyte maturation decreased significantly in simulated microgravity. The rate of maturation was 8.94% in simulated microgravity and was 73.0% in 1 g gravity. The results show that the maturation of mouse oocytes in vitro was inhibited by the simulated microgravity. The spindle morphology observation shows that the microtubules and chromosomes can not form a complete spindle during oocyte meiotic maturation under simulated microgravity. And the disorder of γ-tubulin may partially result in disorganization of microtubules under simulated microgravity. These observations suggest that the meiotic spindle organization is gravity dependent. Although the spindle organization was disrupted by simulated microgravity, the function and organization of microfilaments were not pronouncedly affected by simulated microgravity. And we found that simulated microgravity induced oocytes cytoplasmic blebbing via an unknown mechanism. Transmission electron microscope detection showed that the components of the blebs were identified with the cytoplasm. Collectively, these results indicated that the simulated microgravity inhibits mouse oocyte maturation via disturbing spindle organization and inducing cytoplasmic blebbing.  相似文献   

2.
3.
Induction of repeated superovulation with exogenous hormones is widely used in assisted reproductive technology (ART). Though it is generally safe, emerging evidence has indicated that repeated superovulation may compromise oocyte quality. However, few studies have explored how to ameliorate such impairment. Because melatonin has beneficial influences on oocytes in various detrimental environments, we aimed to explore whether melatonin could protect mouse oocytes after repeated superovulation. We found that repeated superovulation markedly reduced meiotic maturation and disrupted spindle organization and chromosome alignment. Furthermore, we observed reduced mitochondrial content and enhanced early apoptosis in oocytes from mice subjected to repeated superovulation. In addition, 5-methylcytosine (5mc) fluorescence intensity was lower in oocytes from experimental mice than in those from control mice, indicating that repeated superovulation disrupts genomic DNA methylation, and elevations in reactive oxygen species levels indicated that repeated superovulation also induces oxidative stress. Conversely, melatonin administration improved oocyte maturation and attenuated the observed defects. Interestingly, supplementation with melatonin during in vitro maturation had the same protective effects on oocytes as in vivo melatonin administration. In summary, our results show that melatonin can improve oocyte quality after repeated superovulation and thus provide a potential strategy to improve ART efficiency.  相似文献   

4.
Mitochondrial metabolic capacity and DNA replication have both been shown to affect oocyte quality, but it is unclear which one is more critical. In this study, immature oocytes were treated with FCCP or ddC to independently inhibit the respective mitochondrial metabolic capacity or DNA replication of oocytes during in vitro maturation. To differentiate their roles, we evaluated various parameters related to oocyte maturation (germinal vesicle break down and nuclear maturation), quality (spindle formation, chromosome alignment, and mitochondrial distribution pattern), fertilization capability, and subsequent embryo developmental competence (blastocyst formation and cell number of blastocyst). Inhibition of mitochondrial metabolic capacity with FCCP resulted in a reduced percent of oocytes with nuclear maturation; normal spindle formation and chromosome alignment; evenly distributed mitochondria; and an ability to form blastocysts. Inhibition of mtDNA replication with ddC has no detectable effect on oocyte maturation and mitochondrial distribution, although high-dose ddC increased the percent of oocytes showing abnormal spindle formation and chromosome alignment. ddC did, however, reduce blastocyst formation significantly. Neither FCCP nor ddC exposure had an effect on the rate of fertilization. These findings suggest that the effects associated with lower mitochondrial DNA copy number do not coincide with the effects seen with reduced mitochondrial metabolic activity in oocytes. Inhibiting mitochondrial metabolic activity during oocyte maturation has a negative impact on oocyte maturation and subsequent embryo developmental competence. A reduction in mitochondrial DNA copy number, on the other hand, mainly affects embryonic development potential, but has little effect on oocyte maturation and in vitro fertilization.  相似文献   

5.
Cytoskeleton which includes microtubule and actin filaments plays important roles during mammalian oocyte maturation. In the present study, we showed that protein kinase C mu (PKC mu) was one potential key molecule which affected cytoskeleton dynamics in mouse oocytes. Our results showed that PKC mu expressed and localized at the poles of the spindle during oocyte maturation, and PKC mu expression reduced in the oocytes from 6-month-old mice or 24 hr in vitro culture. We knocked down the expression of PKC mu in oocytes using morpholino injection to explore the relationship between PKC mu and subcellular structure defects. The loss of PKC mu reduced oocyte maturation competence, showing with decreased polar body extrusion rate and increased rate of symmetric division. Further analysis indicated that PKC mu decrease caused the spindle organization defects, and this could be confirmed by the decreased tubulin acetylation level. Moreover, we found that PKC mu affected the phosphorylation level of cofilin for actin assembly, which further affected cytoplasmic actin distribution and spindle positioning. In summary, our data indicated that PKC mu is one key factor for oocyte maturation through its roles on the spindle organization and actin filament distribution.  相似文献   

6.
Oocyte maturation defect can lead to maternal reproduction disorder. NAMPT is a rate-limiting enzyme in mammalian NAD+ biosynthesis pathway, which can regulate a variety of cellular metabolic processes including glucose metabolism and DNA damage repair. However, the function of NAMPT in porcine oocytes remains unknown. In this study, we showed that NAMPT involved into multiple cellular events during oocyte maturation. NAMPT expressed during all stages of porcine oocyte meiosis, and inhibition of NAMPT activity caused the cumulus expansion and polar body extrusion defects. Mitochondrial dysfunction was observed in NAMPT-deficient porcine oocytes, which showed decreased membrane potential, ATP and mitochondrial DNA content, increased oxidative stress level and apoptosis. We also found that NAMPT was essential for spindle organization and chromosome arrangement based on Ac-tubulin. Moreover, lack of NAMPT activity caused the increase of lipid droplet and affected the imbalance of lipogenesis and lipolysis. In conclusion, our study indicated that lack of NAMPT activity affected porcine oocyte maturation through its effects on mitochondria function, spindle assembly and lipid metabolism.  相似文献   

7.
The effects of the pesticide carbendazim (MBC) on the in vitro meiotic maturation of mouse oocytes were evaluated using conventional and confocal fluorescence microscopy. The response of oocytes exposed to 0, 3, 10, or 30 μM MBC during meiotic maturation was analyzed with respect to chromosome organization, meiotic spindle microtubules, and cortical actin using fluorescent labels for each of these structures. Continuous exposure to MBC during the resumption of meiosis resulted in a dose-dependent inhibition of meiotic cell cycle progression at metaphase of meiosis-1. Drug exposure at the metaphase-anaphase transition of meiosis-1 did not interfere with cell cycle progression to metaphase-2 except at high concentrations (30 μM). At the level of spindle microtubule organization, MBC caused a loss of nonacetylated microtubules and a decrease in spindle size at 3 or 10 μM concentrations. Thirty μM MBC prevented spindle assembly when added at the beginning of meiotic maturation or caused spindle pole disruption and fragmentation when added to preformed spindles. Spindle disruption involved a loss of phosphoprotein epitopes, as monitored by MPM-2 staining, and resulted in the appearance of dispersed chromosomes that retained a metaphase-plate location on spindle fragments associated with the oocyte cortex. Polar body extrusion was impaired by MBC, and abnormal polar bodies were observed in most treated oocytes. The results suggest that MBC disrupts cell cycle progression in mouse oocytes by altering meiotic spindle microtubule stability and spindle pole integrity. Mol. Reprod. Dev. 46:351–362, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
Mouse oocytes isolated from large antral follicles were exposed to a wide range of concentrations of bisphenol A (BPA) during maturation in vitro (50 ng/ml to 10 microg/ml BPA in medium). Exposure to high concentrations of BPA (10 microg/ml) affected spindle formation, distribution of pericentriolar material and chromosome alignment on the spindle (termed congression failure), and caused a significant meiotic arrest. However, BPA did not increase hyperploidy at meiosis II at any tested concentration. Some but not all meiosis I arrested oocytes had MAD2-positive foci at centromeres of chromosomes in bivalents, suggesting that they had failed to pass the spindle checkpoint control. In a second set of experiments prepubertal mice were exposed sub-chronically for 7 days to low BPA by daily oral administration, followed by in vitro maturation of the denuded oocytes to metaphase II in the absence of BPA, as this treatment protocol was previously reported to induce chromosome congression failure and therefore suspected to cause aneuploidy in oocytes. The sub-chronic exposure subtly affected spindle morphology and oocyte maturation. However, as with the exposure in vitro, there was no evidence that low BPA doses increased hyperploidy at meiosis II. In conclusion, the data suggest that mouse oocytes from mice respond to BPA-induced disturbances in spindle formation by induction of meiotic arrest. This response might result from an effective checkpoint mechanism preventing the occurrence of chromosome malsegregation and aneuploidy. Low chronic BPA exposure in vivo as such does not appear to pose a risk for induction of errors in chromosome segregation at first meiosis in mouse oocytes. Additional factors besides BPA may have caused the high rate of congression failure and the temporary increase in hyperploidy in mouse metaphase II oocytes reported previously.  相似文献   

9.
DNA damage has recently been shown to inhibit or delay germinal vesicle breakdown (GVBD) in mouse oocytes, but once meiosis resumes, DNA-damaged oocytes are able to extrude the first polar body. In this study, using porcine oocytes, we showed that DNA damage did not affect GVBD, but inhibited the final stages of maturation, as indicated by failure of polar body emission. Unlike mitotic cells in which chromosome mis-segregation causes DNA double-strand breaks, meiotic mouse oocytes did not show increased DNA damage after disruption of chromosome attachment to spindle microtubules. Nocodazole-treated oocytes did not display increased DNA damage signals that were marked by γH2A.X signal strength, but reformed spindles and underwent maturation, although aneuploidy increased after extended nocodazole treatment. By using the mouse for parthenogenetic activation studies, we showed that early cleavage stage embryos derived from parthenogenetic activation of nocodazole-treated oocytes displayed normal activation rate and normal γH2A.X signal strength, indicating that no additional DNA damage occured. Our results suggest that DNA damage inhibits porcine oocyte maturation, while nocodazole-induced dissociation between chromosomes and microtubules does not lead to increased DNA damage either in mouse meiotic oocytes or in porcine oocytes.  相似文献   

10.
Synaptotagmin1, a calcium sensor for exocytosis, forms the 7S complex, or so-called SNARE protein complex, together with SNAP -25, syntaxin and synaptobrevin to mediate docking and fusion of synaptic vesicles to the plasma membrane of the nerve terminal. Here, we identified the unique localization, expression and function of Syt1 during mouse oocyte meiotic maturation by using confocal microscopy, western blotting, Morpholino-based knockdown and time-lapse live cell imaging. We showed that Syt1 expression was gradually increased during oocyte maturation. Syt1 was localized at the oocyte cortex from GV to MII stages and at the spindle poles in MI and MII phases, with one third of a signal-free zone at the oocyte cortex, where the chromosomes are located, which is similar to the distribution pattern of CGs from the pro-MI to MII stages. Knockdown of Syt1 resulted in pro-MI/MI arrest and PB1 extrusion decrease, with severely disrupted spindles and misaligned chromosomes. Knockdown of Syt1 also caused abnormal localization of γ-tubulin, which became redistributed into the cytoplasm. Chromosome spreading showed failure of homologous chromosome segregation. The spindle assembly checkpoint protein Bub3 was detected at the kinetochores even after 10 h of oocyte culture. Live cell imaging analysis revealed that knockdown of Syt1 resulted in abnormal spindles with various morphologies and chromosomes arrested at the pro-MI/MI stage. Defective spindles failed to support chromosome alignment along microtubules, which led to repetitive unsuccessful metaphase-anaphase transitions and failure of PB1 extrusion after extended culture. Taken together, we suggest that Syt1 may act as a MTOC-associated protein to play important roles in mouse oocyte spindle organization/stability, and that it is indispensable for the metaphase-anaphase transition to promote mouse oocyte meiotic maturation.  相似文献   

11.
During oocyte meiotic maturation, meiotic spindles form in the central cytoplasm and then migrate to the cortex to extrude a small polar body, forming a highly polarized cell through a process involving actin and actin-related molecules. The mechanisms underlying oocyte polarization are still unclear. The Arp2/3 complex regulates oocyte polarization but it is not known whether the WASP family of proteins, a known regulator of the Arp2/3 complex, is involved in this context. In the present study, the role of WASP family member WAVE2 in mouse oocyte asymmetric division was investigated. (1) WAVE2 mRNA and protein were detected during mouse oocyte meiosis. (2) siRNA-mediated and antibody-mediated disruption of WAVE2 resulted in the failure of chromosome congression, spindle formation, spindle positioning and polar body extrusion. (3) WAVE2 regulated actin-driven chromosome migration since chromosomes were arrested in the central cytoplasm by WAVE2 RNAi in the absence of microtubules. (4) Localization of γ-tubulin and MAPK was disrupted after RNAi, confirming the effect of WAVE2 on spindle formation. (5) Actin cap and cortical granule-free domain (CGFD) formation was also disrupted, further confirming the failure of oocyte polarization. Our data suggest that WAVE2 regulates oocyte polarization by regulating meiotic spindle, peripheral positioning, probably via an actin-mediated pathway, and is involved in polar body emission during mouse oocyte meiotic maturation.  相似文献   

12.
Oocyte maturation is an important process required to achieve optimal oocyte quality, and later affects fertilization potential and subsequent embryo development. The maturation process includes synchronized nuclear and cytoplasmic remodeling, in which cytoskeletal and centrosome dynamics play an important role and significantly participate in cellular signaling. Centrosome remodeling within the maturing oocyte is essential for accurate meioisis I and II spindle formation, specifically to separate chromosomes accurately during the two successive, highly asymmetric meiotic cell divisions. Centrosomal abnormalities result in inaccurate microtubule organization and inaccurate chromosome alignment, with failures in chromosome segregation leading to aneuploidy and chromosomal abnormalities. The present review is focused on cytoskeletal and centrosome remodeling during oocyte maturation, with specific attention to γ-tubulin, pericentrin, the Nuclear Mitotic Apparatus (NuMA) protein, and microtubule organization. Species-specific differences will be discussed for rodent (mouse) and non-rodent (bovine, porcine) species, and for human oocytes.  相似文献   

13.
Trichlorfon (TCF), an organophosphate insecticide and potent inhibitor of choline esterases, was previously shown to induce first meiotic nondisjunction and spindle aberrations in isolated, follicle cell-denuded mouse oocytes maturing in vitro. To explore dose-response and direct and indirect, potentially synergistic effects of TCF on the somatic cells and the oocyte within a follicle, we presently employed preantral follicle culture. 100 microg/ml TCF added at the time of hormonally stimulated resumption of meiosis of follicle cell-enclosed mouse oocytes, 16 h before in vitro ovulation, induced significant rises in first meiotic nondisjunction in oocytes from preantral follicle culture. Lower concentrations (6 microg/ml TCF) disturbed polar body formation. Nuclear maturation to meiosis II in absence of cytokinesis resulted in significant increases in polyploidy. Oocytes maturing in follicles in the presence of TCF had aberrant second meiotic spindles. Influences of TCF on somatic cell function were evident by reduced follicular mucification in vitro and deceased progesterone production. In contrast to TCF, acetylcholine (0.1-100 microM) increased progesterone production. The observations therefore suggest that TCF influences oocyte maturation and folliculogenesis directly and indirectly. High TCF is aneugenic at first meiotic division in oocytes, irrespective of the presence or absence of follicle cells. At lower concentrations TCF interferes with spindle formation, chromosome congression at meiosis II, and coordination of nuclear and cytoplasmic maturation, posing risks for second meiotic errors. The observations suggest that chronic TCF exposure during maturation in the follicle may predispose oocytes to the formation of chromosomally unbalanced preimplantation embryos after fertilization.  相似文献   

14.
Mammalian cyclin A1 is prominently expressed in testis and essential for meiosis in the male mouse, however, it shows weak expression in ovary, especially during oocyte maturation. To understand why cyclin A1 behaves in this way in the oocyte, we investigated the effect of cyclin A1 overexpression on mouse oocyte meiotic maturation. Our results revealed that cyclin A1 overexpression triggered meiotic resumption even in the presence of germinal vesicle breakdown inhibitor, milrinone. Nevertheless, the cyclin A1-overexpressed oocytes failed to extrude the first polar body but were completely arrested at metaphase I. Consequently, cyclin A1 overexpression destroyed the spindle morphology and chromosome alignment by inducing premature separation of chromosomes and sister chromatids. Therefore, cyclin A1 overexpression will prevent oocyte maturation although it can promote meiotic resumption. All these results show that decreased expression of cyclin A1 in oocytes may have an evolutional significance to keep long-lasting prophase arrest and orderly chromosome separation during oocyte meiotic maturation.  相似文献   

15.
Spc25 is a component of the Ndc80 complex which consists of Ndc80, Nuf2, Spc24, and Spc25. Previous work has shown that Spc25 is involved in regulation of kinetochore microtubule attachment and the spindle assembly checkpoint in mitosis. The roles of Spc25 in meiosis remain unknown. Here, we report its expression, localization and functions in mouse oocyte meiosis. The Spc25 mRNA level gradually increased from the GV to MI stage, but decreased by MII during mouse oocyte meiotic maturation. Immunofluorescent staining showed that Spc25 was restricted to the germinal vesicle, and associated with chromosomes during all stages after GVBD. Overexpression of Spc25 by mRNA injection resulted in oocyte meiotic arrest, chromosome misalignment and spindle disruption. Conversely, Spc25 RNAi by siRNA injection resulted in precocious polar body extrusion and caused severe chromosome misalignment and aberrant spindle formation. Our data suggest that Spc25 is required for chromosome alignment, spindle formation, and proper spindle checkpoint signaling during meiosis.  相似文献   

16.
Aurora-A is a serine/threonine protein kinase that plays a role in cell-cycle regulation. The activity of this kinase has been shown to be required for regulating multiple stages of mitotic progression in somatic cells. In this study, the changes in aurora-;A expression were revealed in mouse oocytes using Western blotting. The subcellular localization of aurora-A during oocyte meiotic maturation, fertilization, and early cleavages as well as after antibody microinjection or microtubule assembly perturbance was studied with confocal microscopy. The quantity of aurora-A protein was high in the germinal vesicle (GV) and metaphase II (MII) oocytes and remained stable during other meiotic maturation stages. Aurora-A concentrated in the GV before meiosis resumption, in the pronuclei of fertilized eggs, and in the nuclei of early embryo blastomeres. Aurora-A was localized to the spindle poles of the meiotic spindle from the metaphase I (MI) stage to metaphase II stage. During early embryo development, aurora-A was found in association with the mitotic spindle poles. Aurora-A was not found in the spindle region when colchicine or staurosporine was used to inhibit microtubule organization, while it accumulated as several dots in the cytoplasm after taxol treatment. Aurora-A antibody microinjection decreased the rate of germinal vesicle breakdown (GVBD) and distorted MI spindle organization. Our results indicate that aurora-A is a critical regulator of cell-cycle progression and microtubule organization during mouse oocyte meiotic maturation, fertilization, and early embryo cleavage.  相似文献   

17.
SIRT4 modulates energy homeostasis in multiple cell types and tissues. However, its role in meiotic oocytes remains unknown. Here, we report that mouse oocytes overexpressing SIRT4 are unable to completely progress through meiosis, showing the inadequate mitochondrial redistribution, lowered ATP content, elevated reactive oxygen species (ROS) level, with the severely disrupted spindle/chromosome organization. Moreover, we find that phosphorylation of Ser293‐PDHE1α mediates the effects of SIRT4 overexpression on metabolic activity and meiotic events in oocytes by performing functional rescue experiments. By chance, we discover the SIRT4 upregulation in oocytes from aged mice; and importantly, the maternal age‐associated deficient phenotypes in oocytes can be partly rescued through the knockdown of SIRT4. These findings reveal the critical role for SIRT4 in the control of energy metabolism and meiotic apparatus during oocyte maturation and indicate that SIRT4 is an essential factor determining oocyte quality.  相似文献   

18.
The cryopreservation of oocytes is an open problem as a result of their structural sensitivity to the freezing process. This study examined (i) the survival and meiotic competence of ovine oocytes vitrified at the GV stage with or without cumulus cells; (ii) the viability and functional status of cumulus cells after cryopreservation; (iii) the effect of cytochalasin B treatment before vitrification; (iv) chromatin and spindle organization; (v) the maturation promoting factor (MPF) and mitogen-activated protein kinase (MAPK) activity of vitrified oocytes after in vitro maturation. Sheep oocytes were vitrified at different times during in vitro maturation (0, 2, and 6 h) with (COCs) or without cumulus cells (DOs). After warming and in vitro maturation, oocytes denuded at 0 h culture showed a significantly higher survival and meiotic maturation rate compared to the other groups. Hoechst 33342/propidium iodide double staining of COCs and microinjection of Lucifer Yellow revealed extensive cumulus cell membrane damage and reduced oocyte-cumulus cell communications after vitrification. Cytochalasin B treatment of COCs before vitrification exerted a negative effect on oocyte survival. After in vitro maturation, the number of vitrified oocytes with abnormal spindle and chromatin configuration was significantly higher compared to control oocytes, independently of the presence or absence of cumulus cells. The removal of cumulus cells combined with vitrification significantly decreased the MPF and MAPK levels. This study provides evidence that the removal of cumulus cells before vitrification enhances oocyte survival and meiotic competence, while impairing the activity of important proteins that could affect the developmental competence of oocytes.  相似文献   

19.
Astrin has been described as a microtubule and kinetochore protein required for the maintenance of sister chromatid cohesion and centrosome integrity in human mitosis. However, its role in mammalian oocyte meiosis is unclear. In this study, we find that Astrin is mainly associated with the meiotic spindle microtubules and concentrated on spindle poles at metaphase I and metaphase II stages. Taxol treatment and immunoprecipitation show that Astrin may interact with the centrosomal proteins Aurora-A or Plk1 to regulate microtubule organization and spindle pole integrity. Loss-of-function of Astrin by RNAi and overexpression of Tof the coiled-coil domain results in spindle disorganization, chromosome misalignment and meiosis progression arrestT. Thr24, Ser66 or Ser447 may be the potential phosphorylated sites of Astrin by Plk1, as site-directed mutation of these sites causes oocyte meiotic arrest at HTmetaphaseTH I with highly disordered spindles and disorganized chromosomes, although mutant Astrin localizes to the spindle apparatus. Taken together, these data strongly suggest that Astrin is critical for meiotic spindle assembly and maturation in mouse oocytes.  相似文献   

20.
The microtubule-associated protein ASPM (abnormal spindle-like microcephaly-associated) plays an important role in spindle organization and cell division in mitosis and meiosis in lower animals, but its function in mouse oocyte meiosis has not been investigated. In this study, we characterized the localization and expression dynamics of ASPM during mouse oocyte meiotic maturation and analyzed the effects of the downregulation of ASPM expression on meiotic spindle assembly and meiotic progression. Immunofluorescence analysis showed that ASPM localized to the entire spindle at metaphase I (MI) and metaphase II (MII), colocalizing with the spindle microtubule protein acetylated tubulin (Ac-tubulin). In taxol-treated oocytes, ASPM colocalized with Ac-tubulin on the excessively polymerized microtubule fibers of enlarged spindles and the numerous asters in the cytoplasm. Nocodazole treatment induced the gradual disassembly of microtubule fibers, during which ASPM remained colocalized with the dynamic Ac-tubulin. The downregulation of ASPM expression by a gene-specific morpholino resulted in an abnormal meiotic spindle and inhibited meiotic progression; most of the treated oocytes were blocked in the MI stage with elongated meiotic spindles. Furthermore, coimmunoprecipitation combined with mass spectrometry and western blot analysis revealed that ASPM interacted with calmodulin in MI oocytes and that these proteins colocalized at the spindle. Our results provide strong evidence that ASPM plays a critical role in meiotic spindle assembly and meiotic progression in mouse oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号