首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Aaptamine, a benzonaphthyridine alkaloid was isolated from a marine sponge on the guidance of a bioassay using the transfected human osteosarcoma MG63 cells (MG63luc(+)). Aaptamine activated p21 promoter stably transfected in MG63 cells dose-dependently at the concentrations of 20-50microM. Expression of p21 and its mRNA in the wild-type MG63 cells also increased by aaptamine-treatment. Furthermore, the cell cycle of MG63 cells was arrested at the G2/M phase within 48h by the aaptamine-treatment. To analyze a responsive element of p21 promoter in the up-regulation of p21 by aaptamine, MG63 cells were transiently transfected with a series of the deleted or mutated promoter segments, and induction of luciferase with aaptamine treatment was examined by using these corresponding transfected cells. The activation of p21 promoter by aaptamine was led through acting Sp1 sites between -82 and -50bp in a p53-independent manner.  相似文献   

3.
为研究ASPP2对奥沙利铂诱导的结肠癌细胞系HCT116 p53+/+(野生型)凋亡及周期的影响.利用ASPP2(rAd-ASPP2)及p53腺病毒(rAd-p53)感染HCT116 p53+/+细胞,经奥沙利铂50 μmol/L诱导细胞凋亡及周期改变.Western印迹检测ASPP2及p53的表达水平;MTT法检测ASPP2腺病毒对奥沙利铂诱导的HCT116细胞活性的影响;Calcein/PI吸收试验检测细胞凋亡情况;流式细胞术分析细胞周期分布. 结果显示,ASPP2、p53共同过表达,或者ASPP2单独过表达均能增强奥沙利铂诱导的HCT116 p53+/+细胞增殖抑制,以及S期抑制并伴有细胞凋亡水平的升高;而无奥沙利铂诱导时,ASPP2对HCT116 p53+/+细胞的活性、细胞周期及细胞凋亡水平的影响无统计学意义. 上述结果表明,ASPP2能够增强奥沙利铂诱导HCT116 p53+/+细胞的增殖抑制、细胞周期抑制和细胞凋亡.  相似文献   

4.
《Molecular cell》2020,77(5):970-984.e7
  1. Download : Download high-res image (232KB)
  2. Download : Download full-size image
  相似文献   

5.
Tumor suppressor p53 is an essential regulator in mammalian cellular responses to DNA damage including cell cycle arrest and apoptosis. Our study with Chinese hamster ovary CHO-K1 cells indicates that when p53 expression and its transactivation capacity was inhibited by siRNA, UVC-induced G2/M arrest or apoptosis were unaffected as revealed by flow cyotmetric analyses and other measurements. However, inhibition of p53 rendered the cells slower to repair UV-induced damages upon a plasmid as shown in host cell reactivation assay. Furthermore, the nuclear extract (NE) of p53 siRNA-treated cells was inactive to excise the UV-induced DNA adducts as analyzed by comet assay. Consistently, the immunodepletion of p53 also deprived the excision activity of the NE in the similar experiment. Thus, tumor suppressor p53 of CHO-K1 cells may facilitate removal of UV-induced DNA damages partly via its involvement in the repair mechanism.  相似文献   

6.
Cordycepin (3′-deoxyadenosine), a bioactive compound of Cordycepsmilitaris, has many pharmacological activities. The present study reveals novel molecular mechanisms for the anti-tumor effects of cordycepin in two different bladder cancer cell lines, 5637 and T-24 cells. Cordycepin treatment, at a dose of 200 μM (IC50) during cell-cycle progression resulted in significant and dose-dependent growth inhibition, which was largely due to G2/M-phase arrest, and resulted in an up-regulation of p21WAF1 expression, independent of the p53 pathway. Moreover, treatment with cordycepin-induced phosphorylation of JNK (c-Jun N-terminal kinases). Blockade of JNK function using SP6001259 (JNK-specific inhibitor) and small interfering RNA (si-JNK1) rescued cordycepin-dependent p21WAF1 expression, inhibited cell growth, and decreased cell cycle proteins. These results suggest that cordycepin could be an effective treatment for bladder cancer.  相似文献   

7.
Lu MC  Yang SH  Hwang SL  Lu YJ  Lin YH  Wang SR  Wu YC  Lin SR 《Life sciences》2006,78(20):2378-2383
Squamocin is one of the annonaceous acetogenins and has been reported to have anticancer activity. Squamocin was found to inhibit the growth of K562 cells in a time- and dose-dependent manner. Cell cycle analysis showed G2/M phase arrest in K562 cells following 24 h exposure to squamocin. During the G2/M arrest, cyclin-dependent kinase inhibitors (CDKIs), p21 and p27 were increased in a dose-dependent manner. Analysis of the cell cycle regulatory proteins demonstrated that squamocin did not change the steady-state levels of Cdk2, Cdk4, cyclin A, cyclin B1, cyclin D3 and cyclin E, but decreased the protein levels of Cdk1 and Cdc25C. These results suggest that squamocin inhibits the proliferation of K562 cells via G2/M arrest in association with the induction of p21, p27 and the reduction of Cdk1 and Cdc25C kinase activities.  相似文献   

8.
9.
10.
In this study, we explored the therapeutic potential of microRNA (miR) analogs against non–small-cell lung cancer (NSCLC) using lentiviral delivery of short hairpin RNA (shRNA). By using A549 as a model cell line, we used analogs and mimics of miR-4319/miR-125-5p to target the tumorigenic RAF1 gene. Lentiviral vectors carrying shRNA of a highly efficient miRNA analog of miR-4319/miR-125-5p, Analog2, were constructed to infect A549 cells. Our results showed that, compared with the noncancerous bronchial epithelial cell line 16HBE, lentivirus delivering Analog2 shRNA induced significant G2/M arrest and subsequent apoptosis in A549 cells, but not in 16HBE cells. Western blot analysis revealed that key factors regulating cell cycle were downregulated following RAF1 inhibition. In vivo xenograft experiments showed that lentivirus carrying Analog2 shRNA markedly decreased tumor size. Therefore, lentiviral delivery of Analog2 shRNA is a valid RNA interference-based treatment against NSCLC with high potency and specificity.  相似文献   

11.
Griseofulvin (GF), an oral antifungal agent, has been shown to exert antitumorigenesis effect through G2/M cell cycle arrest in colon cancer cells. But the underlying mechanisms remained obscure. The purpose of this study is to test the cytotoxic effect of GF on HL-60 and HT-29 cells and elucidate its underlying molecular pathways. Dose-dependent and time-course studies by flow cytometry demonstrated that 30 to 60 microM GF significantly induced G2/M arrest and to a less extend, apoptosis, in HL-60 cells. In contrast, only G2/M arrest was observed in HT-29 cells under similar condition. Pretreatment of 30 microM TPCK, a serine protease inhibitor, completely reversed GF-induced G2/M cell cycle arrest and apoptosis in HL-60 cells but not in HT-29 cells. The GF-induced G2/M arrest in HL-60 cells is reversible. Using EMSA and super-shift analysis, we demonstrated that GF stimulated NF-kappaB binding activity in HL-60 cells, which was completely inhibited by pretreatment of TPCK. Treatment of HL-60 with 30 microM GF activated JNK but not ERK or p38 MAPK and subsequently resulted in phosphorylation of Bcl-2. Pretreatment of TPCK to HL-60 cells blocked the GF-induced Bcl-2 phosphorylation but not JNK activation. Time course study demonstrated that activation of cdc-2 kinase activity by GF correlated with Bcl-2 phosphorylation. Taken together, our results suggest that activation of NF-kappaB pathway with cdc-2 activation and phosphorylation of Bcl-2 might be involved in G2/M cell cycle arrest in HL-60 cells.  相似文献   

12.
Non-ionizing radiation produced by nanosecond pulsed electric fields (nsPEFs) is an alternative to ionizing radiation for cancer treatment. NsPEFs are high power, low energy (non-thermal) pulses that, unlike plasma membrane electroporation, modulate intracellular structures and functions. To determine functions for p53 in nsPEF-induced apoptosis, HCT116p53+/+ and HCT116p53−/− colon carcinoma cells were exposed to multiple pulses of 60 kV/cm with either 60 ns or 300 ns durations and analyzed for apoptotic markers. Several apoptosis markers were observed including cell shrinkage and increased percentages of cells positive for cytochrome c, active caspases, fragmented DNA, and Bax, but not Bcl-2. Unlike nsPEF-induced apoptosis in Jurkat cells (Beebe et al. 2003a) active caspases were observed before increases in cytochrome c, which occurred in the presence and absence of Bax. Cell shrinkage occurred only in cells with increased levels of Bax or cytochrome c. NsPEFs induced apoptosis equally in HCT116p53+/+ and HCT116p53−/− cells. These results demonstrate that non-ionizing radiation produced by nsPEFs can act as a non-ligand agonist with therapeutic potential to induce apoptosis utilizing mitochondrial-independent mechanisms in HCT116 cells that lead to caspase activation and cell death in the presence or absence of p-53 and Bax. This work was supported by the U.S. Air Force Office of Scientific Research/DOD MURI grant on Subcellular Responses to Narrow Band and Wide Band Radio Frequency Radiation, administered by Old Dominion University, and the American Cancer Society.  相似文献   

13.
Dimethyl cardamonin (2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone; DMC) is a naturally occurring chalcone, and it is the major compound isolated from the leaves of Syzygium samarangense (Blume) Merr. & L.M. Perry (Myrtaceae). Experiments were conducted to determine the effects of DMC on cell proliferation, cell-cycle distribution, and programmed cell death in cultures of human colorectal carcinoma HCT116 and LOVO cells. Results showed that DMC inhibited HCT116 and LOVO cell proliferation and induced G(2) /M cell cycle arrest, which was associated with the conversion of microtubule associated protein light chain 3 (LC3)-I-LC3-II, an autophagosome marker, and the incorporation of monodansylcadaverine (MDC), a marker for the acidic compartment of autolysosomes or acidic vesicular organelles. The treatment of HCT116 and LOVO cells using a combination of DMC with an autophagy inhibitor, such as 3-methyladenine (3-MA), beclin 1 siRNA, or atg5 siRNA, suppressed the effect of DMC-mediated anti-proliferation. These results imply that DMC can suppress colorectal carcinoma HCT116 and LOVO cell proliferation through a G(2) /M phase cell-cycle delay, and can induce autophagy, the hallmark of Type II programmed cell death (PCD). Taken together, our results suggest that DMC may be an effective chemotherapeutic agent for HCT116 and LOVO colorectal carcinoma cells.  相似文献   

14.
Kuo PL  Chiang LC  Lin CC 《Life sciences》2002,72(1):23-34
Resveratrol, a phytoalexin found in many plants, has been reported to possess a wide range of pharmacological properties and is one of the promising chemopreventive agents for cancer. Here, we examined the antiproliferation effect of resveratrol in two human liver cancer cell lines, Hep G2 and Hep 3B. Our results showed that resveratrol inhibited cell growth in p53-positive Hep G2 cells only. This anticancer effect was a result of cellular apoptotic death induced by resveratrol via the p53-dependent pathway. Here we demonstrated that the resveratrol-treated cells were arrested in G1 phase and were associated with the increase of p21 expression. In addition, we also illustrated that the resveratrol-treated cells had enhanced Bax expression but they were not involved in Fas/APO-1 apoptotic signal pathway. In contrast, the p53-negative Hep 3B cells treated with resveratrol did not show the antiproliferation effect neither did they show significant changes in p21 nor Fas/APO-1 levels. In summary, our study demonstrated that the resveratrol effectively inhibited cell growth and induced programmed cell death in Hepatoma cells on a molecular basis. Furthermore, these results implied that resveratrol might also be a new potent chemopreventive drug candidate for liver cancer as it played an important role to trigger p53-mediated molecules involved in the mechanism of p53-dependent apoptotic signal pathway.  相似文献   

15.
p53凋亡刺激蛋白2(apoptosis stimulating protein 2 of p53, ASPP2)能特异性地与p53蛋白结合并增强其促凋亡的功能,进而发挥抗肿瘤作用. 本室前期研究发现,ASPP2可以通过p53-DRAM自噬途径诱导细胞凋亡. 在本研究中,利用ASPP2 腺病毒感染Hep3B细胞(p53缺陷型肝癌细胞系)并用甲基磺酸(MMS)处理后; Calcein AM/PI和M30染色检测细胞凋亡;GFP-LC3质粒转染细胞后检测自噬; 荧光定量PCR和免疫印迹检测自噬基因表达. 结果表明,ASPP2在p53缺陷的Hep3B细胞内可诱导发生凋亡;在MMS存在和缺失条件下, Adr-ASPP2均引起自噬体水平升高及自噬基因的表达增 加,且MMS协同Adr-ASPP2能使自噬水平增加; 进一步用VPS34 siRNA和DRAM siRNA抑 制自噬发现,细胞凋亡水平下降, 说明由Adr-ASPP2诱发经损伤相关自噬调节蛋白( DRAM)介导的自噬参与了肝癌细胞系凋亡的发生. 综上结果表明,ASPP2可以通过非p53依赖的DRAM介导自噬,并促进肝癌细胞凋亡. 该研究可为肝癌的基因治疗提供新的思路.  相似文献   

16.
We studied the effect of 2-(6-(2-thieanisyl)-3(Z)-hexen-1,5-diynyl)aniline(THDA), a newly developed anti-cancer agent, on cell proliferation, cell cycle progression, and induction of apoptosis in K562 cells. THDA was found to inhibit the growth of K562 cells in a time-and dose-dependent manner. Cell cycle analysis showed G2/M phase arrest and apoptosis in K562 cells following 24 h exposure to THDA. During the G2/M arrest, cyclin-dependent kinase inhibitors (CDKIs), p21 and p27 were increased in a time-dependent manner. Analysis of the cell cycle regulatory proteins demonstrated that THDA did not change the steady-state levels of cyclin B1, cyclin D3 and Cdc25C, but decreased the protein levels of Cdk1, Cdk2 and cyclin A. THDA also caused a marked increase in apoptosis, which was associated with activation of caspase-3 and proteolytic cleavage of poly (ADP-ribose) polymerase. These molecular alterations provide an insight into THDA-caused growth inhibition, G2/M arrest and apoptotic death of K562 cells.  相似文献   

17.
18.
19.
Despite the fact that temozolomide (TMZ) has been widely accepted as the key chemotherapeutic agent to prolong the survival of patients with glioblastoma, failure and recurrence cases can still be observed in clinics. Glioma stem-like cells (GSCs) are thought to be responsible for the drug resistance. In this study, we investigate whether endothelial monocyte-activating polypeptide-II (EMAP-II), a pro-inflammatory cytokine, can enhance TMZ cytotoxicity on U87MG and GSCs or not. As described in prior research, GSCs have been isolated from U87MG and maintained in the serum-free DMEM/F12 medium containing EGF, b-FGF, and B27. TMZ and/or EMAP-II administration were performed for 72 h, respectively. The results showed that TMZ combined with EMAP-II inhibit the proliferation of U87MG and GSCs by a larger measure than TMZ single treatment by decreasing the IC50. EMAP-II also enhanced TMZ-induced autophagy-mediated cell death and G2/M arrest. Moreover, we found that EMAP-II functioned a targeted suppression on mTOR, which may involve in the anti-neoplasm mechanism. The results suggest that EMAP-II could be considered as a combined chemotherapeutic agent against glioblastoma by sensitizing U87MG and GSCs to TMZ.  相似文献   

20.
Oridonin was reported to induce L929 cell apoptosis via ROS-mediated mitochondrial and ERK pathways; however, the precise mechanisms by which oridonin induces cell death remain unclear. Herein, we found that oridonin treatment induced an increase in G2/M phase cell percentage. And, G2/M phase arrest was associated with down-regulation of cell cycle related cdc2, cdc25c and cyclinB levels, as well as up-regulation of p21 and p-cdc2 levels. In addition, we discovered that interruption of p53 activation decreased oridonin-induced apoptosis, and blocking ERK by specific inhibitors or siRNA suppressed oridonin-induced p53 activation. Moreover, inhibition of PTK, protein kinase C, Ras, Raf or JNK activation increased oridonin-induced apoptosis. Also, the level of Ras, Raf or JNK was down-regulated by oridonin, and the inhibition of PTK, Ras, Raf activation decreased p-JNK level. In conclusion, oridonin induces L929 cell G2/M arrest and apoptosis, which is regulated by promoting ERK-p53 apoptotic pathway and suppressing PTK-mediated survival pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号