首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteosarcoma (OS) is one of the most common primary bone malignancies, with the survival rate of patients with OS remaining low. Therefore, we conducted this study to identify the potential role combination of both MSH6 gene silencing and cisplatin (DDP) plays in OS cell proliferation and apoptosis. Microarray-based gene expression profiling was used to identify the differentially expressed genes (DEGs) in patients with OS, as well as microRNAs (miRNAs) that regulate the candidate gene. OS tissues from 67 patients with OS along with normal tissues from 24 amputee patients were collected for detection of the positive expression of mutS homolog 6 (MSH6) protein, mRNA, and protein expressions of c-myc, cyclin D1, l-2, B-cell lymphoma 2 (Bcl-2), Stathmin, proliferating cell nuclear antigen (PCNA), and Bcl-2-associated X (Bax). Moreover, after MSH6 silencing and DDP were treated on the selected human OS cell line MG63 with the highest expression of MSH6, cell viability, cell cycle distribution, and apoptosis were detected. The microarray analysis showed that MSH6 was upregulated in OS chip data. Furthermore, silencing MSH6 combined with DDP reduced expressions of c-myc, cyclin D1, Bcl-2, Stathmin, and PCNA, and elevated Bax expression, whereas inhibiting OS cell viability, impeding cell cycle distribution, and inducing apoptosis. In conclusion, our preliminary results indicated that the combination of MSH6 gene silencing coupled with DDP may have a better effect on the inhibition of OS cell proliferation and promote apoptosis, potentially providing targets for the OS treatment.  相似文献   

2.
3.
Osteosarcoma is a mesenchymal malignant bone tumor accompanied by a high rate of lung metastasis and short survival in dogs. Although various therapies have been reported, the etiological mechanism of osteosarcoma remains undetermined and the development of novel therapeutic agents is warranted. In this study, we have reported the diverse functions of quercetin, one of the well-known flavonoid, in D-17 and DSN (canine osteosarcoma) cell lines. Current results indicate that quercetin decreases proliferative properties and increases programmed cell death, in addition to altering the cell cycle, mitochondrial depolarization, level of reactive oxygen species, and concentration of cytoplasmic calcium in both cells. Furthermore, it was observed that quercetin suppresses phosphorylation of AKT, P70S6K, and S6 proteins and upregulates phosphorylation of ERK1 or 2, P38, c-Jun N-terminal kinase, and P90RSK proteins in both cell lines. Collectively, we suggest that quercetin can be used as a pharmacological agent for suppressing the proliferation and inducing the apoptosis of canine osteosarcoma cells.  相似文献   

4.
This study was aimed to investigate the ability of a flavonoid compound breviscapine (BVP) to suppress growth and elicit apoptosis in human osteosarcoma (OS) Saos‐2 cells. The cells were cultured in vitro and treated with three concentrations of BVP (80, 160, and 320 μg/ml). Moreover, C57 mice were injected with Saos‐2 cells to establish a subcutaneous xenograft model, and they were subsequently treated with three doses of BVP via intraperitoneal injection. The viability of the cells was examined by the Cell Counting Kit‐8 method. The apoptotic cells were assessed by flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. The tumor volume and weight were monitored from day 3 through day 21 after the last injection. The expression of bax, bcl‐2, and cytochrome c (cyt c) mRNA was detected by a real‐time polymerase chain reaction. The protein levels of bax, bcl‐2, cyt c, caspase 3, and caspase 9 were evaluated by Western blot. The expression and distribution of bcl‐2 and bax in tissues were detected by immunohistochemistry. Compared with the control group, BVP treatment inhibited cell proliferation and induced apoptosis of Saos‐2 cells in vitro. Consistently, treatment of mice bearing transplanted tumors with BVP suppressed the growth of OS tumors and promoted cell apoptosis; it also reduced tumor volume and weight. Mechanistically, BVP‐induced apoptosis was mediated by the mitochondria‐dependent pathway, as evidenced by the increased expression of bax and cyt c and the decreased expression of bcl‐2, as well as activation of caspase 9 and caspase 3 in vitro and in vitro. Collectively, BVP inhibits growth and promotes apoptosis of OS by activating the mitochondrial apoptosis pathway.  相似文献   

5.
Currently, electrical stimulation (ES) is used to induce changes in various tissues and cellular processes, but its effects on mitochondrial dynamics and mechanisms are unknown. The aim of this study was to compare the effects of monophasic and biphasic, anodal, and cathodal ES on apoptosis, proliferation, and mitochondrial dynamics in neuroblastoma SH-SY5Y cells. Cells were cultured and treated with ES. Alamar blue assay was performed to measure cell proliferation. The proteins expression of apoptotic-related proteins Bcl-2 associated X (Bax), B cell lymphoma 2 (Bcl-2), optic-atrophy-1 (OPA1), mitofusin2 (Mfn2), phosphorylated dynamin-related protein 1 at serine 616 (p-DRP1), and total dynamin-related protein 1 (Total-DRP1) were also determined. The results showed that monophasic anodal and biphasic anodal/cathodal (Bi Anod) ES for 1 hr at 125 pulses per minute (2.0 Hz) produced the most significant increase in cell proliferation. In addition, monophasic anodal and Bi Anod ES treated cells displayed a significant increase in the levels of anti-apoptotic protein Bcl-2, whereas the Bax levels were not changed. Moreover, the levels of Mfn2 were increased in the cells treated by Bi Anod, and OPA1 was increased by monophasic anodal and Bi Anod ES, indicating increased mitochondrial fusion in these ES-treated cells. However, the levels of mitochondrial fission indicated by DRP1 remained unchanged compared with non-stimulated cells. These findings were confirmed through visualization of mitochondria using Mitotracker Deep Red, demonstrating that monophasic anodal and Bi Anod ES could induce pro-survival effects in SH-SY5Y cells through increasing cell proliferation and mitochondrial fusion. Future research is needed to validate these findings for the clinical application of monophasic anodal and Bi Anod ES.  相似文献   

6.
7.
8.
目的:探讨盐酸罗哌卡因对骨肉瘤细胞增殖、侵袭、凋亡的影响及分子机制。方法:采用逐步增加药物剂量诱导法建立骨肉瘤多柔比星耐药细胞株(U2OS/DOX),用浓度分别为0、20、50、100 μg/ml的盐酸罗哌卡因处理U2OS/DOX细胞,作为不同浓度盐酸罗哌卡因处理组;将pcDNA3.1、pcDNA3.1-Livin转染至U2OS/DOX细胞中再用浓度为100 μg/ml的盐酸罗哌卡因处理,记为盐酸罗哌卡因100 μg/ml+pcDNA3.1组、盐酸罗哌卡因100 μg/ml+pcDNA3.1-Livin组。MTT检测细胞增殖抑制率及细胞半数抑制浓度(IC50);蛋白质印迹(Western blot)法检测细胞周期蛋白依赖性激酶抑制剂1A(P21)、活化的半胱氨酸天冬氨酸蛋白酶-3(Cleaved Caspase-3)、上皮钙黏蛋白(E-cadherin)、基质金属蛋白酶2(MMP-2)、Livin蛋白表达;克隆形成实验检测细胞克隆形成数;流式细胞术检测细胞凋亡;Transwell检测细胞迁移和侵袭;实时荧光定量PCR(RT-qPCR)检测Livin mRNA表达水平。结果:多柔比星浓度大于1 μg/ml时,骨肉瘤细胞U2OS增殖抑制率显著升高,且具有剂量依赖性(P<0.05);多柔比星浓度大于10 μg/ml时,骨肉瘤细胞骨肉瘤耐药细胞U2OS/DOX增殖抑制率显著升高,且具有剂量依赖性(P<0.05)。盐酸罗哌卡因处理的U2OS/DOX细胞中P21、Caspase-3、E-cadherin表达水平显著升高,MMP-2表达水平显著降低,细胞增殖抑制率显著升高,克隆形成数显著降低,细胞凋亡率显著升高,细胞迁移、侵袭数显著降低,Livin表达水平显著降低,且呈浓度依赖性(P<0.05)。过表达Livin部分逆转了盐酸罗哌卡因对细胞U2OS/DOX增殖、迁移、侵袭的抑制作用及凋亡的促进作用。结论:盐酸罗哌卡因能明显抑制对多柔比星具有耐药性的骨肉瘤细胞的增殖,迁移和侵袭,明显促进骨瘤细胞凋亡,其机制可能与Livin有关。  相似文献   

9.
The exits from metaphase arrest and anatomy of mitotic catastrophe were studied in two human osteosarcoma cell lines, nontumorigenic HOS TE85 and its chemically transformed strain MNNG-HOS, applying mild genotoxic damage by heat shock at 41.8 degrees C for 24 h. Under these conditions, both cell lines doubled or tripled their mitotic index entering arrest in metaphase. On return to 37 degrees C, the arrest was either released or ended in apoptosis. The transformed strain showed a greater capacity to arrest in metaphase as well as a greater probability of developing the third pathway: to restitute this arrest in polyploid interphase. This, in turn, either entered an 'endocycle' or, following a delay, apoptosis. Thus, arrest in metaphase was a cross-point of the mitotic cycle, apoptosis, and endocycle. Mitotic catastrophe can morphologically manifest combinations of elements of these three processes.  相似文献   

10.
11.
12.
Osteosarcoma (OS) is a conversant malignant bone tumor, commonly occurs in children and adolescents. Nimotuzuma is an epidermal growth factor receptor (EGRF) monoclonal antibody agent, which has been exploited in varied solid tumors. Nevertheless, the functions of Nimotuzuma in OS remain blurry. We attempted to disclose the impacts of Nimotuzuma on OS cells proliferation and apoptosis. OS MG-63 and U2OS cells were stimulated with the disparate doses of Nimotuzuma. Then, cell viability, cell cycle, and apoptosis were appraised through executing CCK-8 and flow cytometry assays. Moreover, the change of mitochondrial membrane potential (ΔΨm) was estimated via JC-1 fluorescent probe to further probe the impacts of Nimotuzuma on cell apoptosis. The proteins of cell apoptosis, cell cycle, and EGFR/PI3K/AKT were appraised via western blot. Eventually, Nimotuzuma together EGRF or PI3K inhibitor (LY294002) were utilized to dispose MG-63 to further uncover the latent mechanism. We found that Nimotuzuma remarkably repressed cell viability at a time- and dose-dependent manners in MG-63 and U2OS cells. The percentage of the S phase cells was evidently reduced by Nimotuzuma through regulating P21, Cyclin E1, and Cyclin D1. In addition, Nimotuzuma obviously evoked cell apoptosis, meanwhile elevated Bid, Bax, and cleaved-caspase-3. Further exploration showed that Nimotuzuma decreased ΔΨm in a dose-dependent manner in MG-63 and U2OS cells. Besides, we discovered the repressive functions of Nimotuzuma in OS cells proliferation and apoptosis via hindering the EGFR/PI3K/AKT pathway. These investigations testified that Nimotuzuma repressed cell growth by restraining the EGFR/PI3K/AKT pathway in OS cells, hinting the antitumor activity of Nimotuzuma in OS.  相似文献   

13.
Sulforaphane (SFN) is a natural organosulfur compound with anti‐oxidant and anti‐inflammation properties. The objective of this study is to investigate the effect of SFN on the proliferation and differentiation of neural stem cells (NSC). NSCs were exposed to SFN at the concentrations ranging from 0.25 to 10 µM. Cell viability was evaluated with MTT assay and lactate dehydogenase (LDH) release assay. The proliferation of NSCs was evaluated with neurosphere formation assay and Ki‐67 staining. The level of Tuj‐1 was evaluated with immunostaining and Western blot to assess NSC neuronal differentiation. The expression of key proteins in the Wnt signaling pathway, including β‐catenin and cyclin D1, in response to SFN treatment or the Wnt inhibitor, DKK‐1, was determined by Western blotting. No significant cytotoxicity was seen for SFN on NSCs with SFN at concentrations of less than 10 µM. On the contrary, SFN of low concentrations stimulated cell proliferation and prominently increased neurosphere formation and NSC differentiation to neurons. SFN treatment upregulated Wnt signaling in the NSCs, whereas DKK‐1 attenuated the effects of SFN. SFN is a drug to promote NSC proliferation and neuronal differentiation when used at low concentrations. These protective effects are mediated by Wnt signaling pathway.  相似文献   

14.
The aim of this study was to explore the regulatory mechanism of circRNA_100876/ microRNA-136 (miR-136) axis in the development and progression of osteosarcoma cancer. Quantitative real-time polymerase chain reaction (RT-qPCR) was used to evaluate the expression levels of circRNA_100876 and miR-136 in osteosarcoma cancer samples and the adjacent nontumor tissues. Then, cell proliferation, cell cycle, apoptosis, and migration of circRNA_100876-knocked down cells were analyzed by in vitro and in vivo experiments, using cell counting kit-8 (CCK-8), flow cytometry, and transwell and tumorigenesis assays. The expression of circRNA_100876 was found to be significantly upregulated in osteosarcoma, and was closely correlated with the tumor size and tumor differentiation degree. In addition, the knockdown of circRNA_100876 could significantly inhibit the tumor growth, both in vitro and in vivo. Flow cytometry and Western blot analysis results showed that the downregulation of circRNA_100876 inhibited osteosarcoma cells proliferation via promoting apoptosis and arresting more cells in the G2/M stage, as suggested by the expression of apoptosis and cell cycle pathway-related proteins, which changed consistently. Furthermore, the level of miR-136 was negatively correlated with the expression of circRNA_100876, and miR-136 inhibitors were able to reverse the suppression of cell proliferation induced by silencing circRNA_100876. Our study demonstrates that the dysregulation of circRNA_100876 could induce apoptosis and arrest the cell cycle at G2/M stage, followed by suppression of cell proliferation in osteosarcoma, while silencing miR-136 could restore the cell growth. Therefore, circRNA_100876 might serve as a promising biomarker and treatment target for osteosarcoma.  相似文献   

15.
16.
17.
Lung cancer is the leading cause of cancer-related deaths. LIM domain kinase (LIMK) 1 is a member of serine/threonine kinase family and highly expressed in various cancers. Luteolin, a polyphenolic plant flavonoid, has been reported to suppress tumour proliferation through inducing apoptosis and autophagy via MAPK activation in glioma. However, the mechanism of luteolin on suppressing lung cancer growth is still unclear. We found that luteolin targeted LIMK1 from the in silico screening and significantly inhibited the LIMK1 kinase activity, which was confirmed with pull-down binding assay and computational docking models. Treatment with luteolin inhibited lung cancer cells anchorage-independent colony growth and induced apoptosis and cell cycle arrest at G1 phase. Luteolin also decreased the expression of cyclin D1 and increased the levels of cleaved caspase-3 by down-regulating LIMK1 signalling related targets, including p-LIMK and p-cofilin. Furthermore, luteolin suppressed the lung cancer patient-derived xenograft tumour growth by decreasing Ki-67, p-LIMK and p-cofilin expression in vivo. Taken together, these results provide insight into the mechanism that underlies the anticancer effects of luteolin on lung cancer, which involved in down-regulation of LIMK1 and its interaction with cofilin. It also provides valuable evidence for translation towards lung cancer clinical trials with luteolin.  相似文献   

18.
Hyperthermia can be used as a possible adjuvant therapy in treatment of cancer patients. In this study, the direct effect of hyperthermia on osteosarcoma derived cell lines HOS85, MG-63 and SaOS-2 was investigated. Heat shock at 42 degrees C inhibited proliferation significantly in all three cell lines tested. Furthermore a sub-lethal heat shock (42 degrees C, 1 h) decreases alkaline phosphatase activity, the absolute marker for osteoblast-like cells, in all of the three cell lines. Hsp70 was expressed constitutively and was found to be upregulated in a time-dependent manner; by up to 150% in Western blot analysis. The results of this study indicate that heat shock has an inhibitory effect on human osteosarcoma cells. These data suggest that hyperthermia has an anti-tumour effect on cancers of the bone and might, therefore, become an adjuvant treatment option.  相似文献   

19.
Summary The characteristics of Cell Line LM-1, established from a human osteosarcoma, have been studied extensively. The cell produced both bone-specific and placental-like alkaline phosphatases when treated with hydrocortisone 21-phosphate; they had specific membrane antigens that reacted with sera from osteosarcoma patients. Injection of LM-1 cells into newborn hamsters treated with antilymphocyte serum produced nodular tumors. The characteristics of LM-1 suggest that this tumor cell line has unique features that may be useful in a variety of studies of human and animal osteosarcoma. This research is supported in part by USPHS Grants HD-09938 and CA-25746.  相似文献   

20.
Osteosarcoma (OS) is a very aggressive metastatic pediatric and adolescent tumor. Due to its recurrent development of chemotherapy resistance, clinical outcome for OS patients remains poor. Therefore, discovering more effective anticancer agents is needed. Chlorogenic acid (CGA) is a phenolic compound contained in plant-related products that modulates many cellular functions and inhibits cell proliferation in several cancer types. However, few evidence is available in OS. Here, we investigate the effects of CGA in U2OS, Saos-2, and MG-63 OS cells. By multiple approaches, we demonstrate that CGA acts as anticancer molecule affecting the cell cycle and provoking cell growth inhibition mainly by apoptosis induction. We also provide evidence that CGA strongly activates extracellular-signal-regulated kinase1/2 (ERK1/2). Strikingly, ERK1/2 inhibitor PD98059 sensitizes the cells to CGA. Altogether, our data enforce the evidence of the anticancer activity mediated by CGA and provide the rationale for the development of innovative therapeutic strategies in OS cure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号