首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
    
This study was aimed to investigate the ability of a flavonoid compound breviscapine (BVP) to suppress growth and elicit apoptosis in human osteosarcoma (OS) Saos‐2 cells. The cells were cultured in vitro and treated with three concentrations of BVP (80, 160, and 320 μg/ml). Moreover, C57 mice were injected with Saos‐2 cells to establish a subcutaneous xenograft model, and they were subsequently treated with three doses of BVP via intraperitoneal injection. The viability of the cells was examined by the Cell Counting Kit‐8 method. The apoptotic cells were assessed by flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. The tumor volume and weight were monitored from day 3 through day 21 after the last injection. The expression of bax, bcl‐2, and cytochrome c (cyt c) mRNA was detected by a real‐time polymerase chain reaction. The protein levels of bax, bcl‐2, cyt c, caspase 3, and caspase 9 were evaluated by Western blot. The expression and distribution of bcl‐2 and bax in tissues were detected by immunohistochemistry. Compared with the control group, BVP treatment inhibited cell proliferation and induced apoptosis of Saos‐2 cells in vitro. Consistently, treatment of mice bearing transplanted tumors with BVP suppressed the growth of OS tumors and promoted cell apoptosis; it also reduced tumor volume and weight. Mechanistically, BVP‐induced apoptosis was mediated by the mitochondria‐dependent pathway, as evidenced by the increased expression of bax and cyt c and the decreased expression of bcl‐2, as well as activation of caspase 9 and caspase 3 in vitro and in vitro. Collectively, BVP inhibits growth and promotes apoptosis of OS by activating the mitochondrial apoptosis pathway.  相似文献   

3.
Cortical function has been suggested to be highly compromised by repeated heroin self-administration. We have previously shown that street heroin induces apoptosis in neuronal-like PC12 cells. Thus, we analysed the apoptotic pathways involved in street heroin neurotoxicity using primary cultures of rat cortical neurons. Our street heroin sample was shown to be mainly composed by heroin, 6-monoacetylmorphine and morphine. Exposure of cortical neurons to street heroin induced a slight decrease in metabolic viability, without loss of neuronal integrity. Early activation of caspases involved in the mitochondrial apoptotic pathway was observed, culminating in caspase 3 activation, Poly-ADP Ribose Polymerase (PARP) cleavage and DNA fragmentation. Apoptotic morphology was completely prevented by the non-selective caspase inhibitor z-VAD-fmk, indicating an important role for caspases in neurodegeneration induced by street heroin. Ionotropic glutamate receptors, opioid receptors and oxidative stress were not involved in caspase 3 activation. Interestingly, street heroin cytotoxicity was shown to be independent of a functional mitochondrial respiratory chain, as determined using NT-2 rho(0) cells. Nonetheless, in street heroin-treated cortical neurons, cytochrome c was released, accompanied by a decrease in mitochondrial potential and Bcl-2/Bax. Pure heroin hydrochloride similarly decreased metabolic viability but only slightly activated caspase 3. Altogether, our data suggest an important role for mitochondria in mediating street heroin neurotoxic effects.  相似文献   

4.
5.
6.
目的:研究Iuteolin对链脲佐菌素诱导的Ⅰ型糖尿病大鼠心功能及心肌线粒体氧化应激的影响。方法:雄性SD大鼠,随机分成正常对照组,Iuteolin对照纽,糖尿病模型组,低剂量Iuteolin(10ms/(kg·d))灌胃治疗组,高剂量Iuteolin(100ms/(kg·d))灌胃治疗组。各组大鼠饲养8周后,测体重、血糖、心功能、左心室重量、心肌胶原含量及活性氧自由基(ROS)水平,分离心肌线粒体检测ROS水平、超氧化物歧化酶(SOD)活性及线粒体肿胀程度。结果:Iuteolin处理对糖尿病大鼠血糖无明显影响,但可减少糖尿病引起的体重下降。高剂量Iuteolin可显著减小糖尿病大鼠心室与体重比值,提高左室发展压,降低左室舒张末压。高剂量Iuteolin治疗后,糖尿病大鼠心肌ROS及胶原含量。心肌线粒体ROS水平与肿胀程度均明显下降,心肌线粒体SOD活性明显增加。结论:Iuteolin处理可显著改善糖尿病大鼠心功能.其机制可能与减轻心肌线粒体氧化应激及抑制线粒体肿胀有关。  相似文献   

7.
The proapoptotic Bcl-2 protein Bax can commit a cell to apoptosis by translocation from the cytosol to the mitochondria and permeabilization of the outer mitochondrial membrane. Prosurvival Bcl-2 family members, such as Bcl-xL, control Bax activity. Bcl-xL recognizes Bax after a conformational change in the N-terminal segment of Bax on the mitochondria and retrotranslocates it back into the cytoplasm, stabilizing the inactive form of Bax. Here we show that Bax retrotranslocation depends on the C-terminal helix of Bcl-xL. Deletion or substitution of this segment reduces Bax retrotranslocation and correlates with the accumulation of GFP-tagged or endogenous Bax on the mitochondria of non-apoptotic cells. Unexpectedly, the substitution of the Bcl-xL membrane anchor by the corresponding Bax segment reverses the Bax retrotranslocation activity of Bcl-xL, but not that of Bcl-xL shuttling. Bax retrotranslocation depends on interaction to the Bcl-xL membrane anchor and interaction between the Bax BH3 domain and the Bcl-xL hydrophobic cleft. Interference with either interaction increases mitochondrial levels of endogenous Bax. In healthy cells, mitochondrial Bax does not permeabilize the outer mitochondrial membrane, but increases cell death after apoptosis induction.  相似文献   

8.
9.
    
Osteosarcoma is a mesenchymal malignant bone tumor accompanied by a high rate of lung metastasis and short survival in dogs. Although various therapies have been reported, the etiological mechanism of osteosarcoma remains undetermined and the development of novel therapeutic agents is warranted. In this study, we have reported the diverse functions of quercetin, one of the well-known flavonoid, in D-17 and DSN (canine osteosarcoma) cell lines. Current results indicate that quercetin decreases proliferative properties and increases programmed cell death, in addition to altering the cell cycle, mitochondrial depolarization, level of reactive oxygen species, and concentration of cytoplasmic calcium in both cells. Furthermore, it was observed that quercetin suppresses phosphorylation of AKT, P70S6K, and S6 proteins and upregulates phosphorylation of ERK1 or 2, P38, c-Jun N-terminal kinase, and P90RSK proteins in both cell lines. Collectively, we suggest that quercetin can be used as a pharmacological agent for suppressing the proliferation and inducing the apoptosis of canine osteosarcoma cells.  相似文献   

10.
以往认为,线粒体的主要功能是提供能量,目前发现线粒体还是调节细胞氧化应激与凋亡的关键部位,并且与毗邻的细胞器-内质网保持密切联系。线粒体功能障碍时可通过加重机体氧化应激、炎症反应、细胞凋亡及胆固醇蓄积等病理过程影响动脉粥样硬化( atherosclerosis, AS)的发生发展。本综述首先简单介绍了线粒体的基本功能,然后重点分析线粒体功能障碍参与AS的最新证据及其分子机制。此方面研究提示线粒体可能是AS的潜在治疗靶点。  相似文献   

11.
    
p21‐activated kinase 7 (PAK7), also named as PAK5, is a member of Rac/Cdc42‐associated Ser/Thr protein kinases. It is overexpressed in some types of cancer such as colorectal and pancreatic cancers. However, the expression status and biological function of PAK7 in osteosarcoma are still ambiguous. To evaluate the expression levels of PAK7 in osteosarcoma tissues and cell lines, immunohistochemistry was used. To investigate the role of PAK7 in cell proliferation, apoptosis and tumorigenicity in vitro and vivo, a recombinant lentivirus expressing PAK7 short hairpin RNA (Lv‐shPAK7) was developed and transfected into Saos‐2 cells. The silencing effect of PAK7 was confirmed by quantitative real‐time PCR (qRT‐PCR) and Western blot technique. PAK7 was overexpressed in osteosarcoma tissue and cell line. By knocking‐down of PAK7, the proliferation and colony formation of Saos‐2 cells were inhibited and apoptosis enhanced significantly. The in vivo tumorigenic ability in xenograft model of Saos‐2 cells was also notably inhibited when PAK7 was knocked down. Our results imply that PAK7 promotes cell proliferation and tumorigenesis and may be an attractive candidate for the therapeutic target of osteosarcoma.  相似文献   

12.
Fucoidan, a sulfated polysaccharide found in brown algae, possesses various biological activities including anti-inflammatory and anti-cancer effects. In this study, we investigated the effects of fucoidan on the cell growth and morphology of human osteosarcoma MG-63 cells and found that fucoidan induces cell aggregation and apoptosis in osteosarcoma cells when the cells are treated with fucoidan upon seeding before becoming stably attached to the plates. Typical characteristics of apoptotic cells such as chromatin condensation and nuclear fragmentation were observed in fucoidan-treated cells. The number of annexin V-stained cells was increased by fucoidan treatment in a dose-dependent manner. Consistent with these results, cell viability and growth rate were decreased and cell spreading was inhibited in the presence of fucoidan, leading to rounded morphological changes of the cells. Our results demonstrate that fucoidan treatment results in cell aggregation through F-actin accumulation at the rounded cell cortex and apoptosis in osteosarcoma MG-63 cells.  相似文献   

13.
    
Sepsis is associated with cardiac dysfunction, which is at least in part due to cardiomyocyte apoptosis. However, the underlying mechanisms are far from being understood. Using the colon ascendens stent peritonitis mouse model of sepsis (CASP), we examined the subcellular mechanisms that mediate sepsis‐induced apoptosis. Wild‐type (WT) CASP mice hearts showed an increase in apoptosis respect to WT‐Sham. CASP transgenic mice expressing a CaMKII inhibitory peptide (AC3‐I) were protected against sepsis‐induced apoptosis. Dantrolene, used to reduce ryanodine receptor (RyR) diastolic sarcoplasmic reticulum (SR) Ca2+ release, prevented apoptosis in WT‐CASP. To examine whether CaMKII‐dependent RyR2 phosphorylation mediates diastolic Ca2+ release and apoptosis in sepsis, we evaluated apoptosis in mutant mice hearts that have the CaMKII phosphorylation site of RyR2 (Serine 2814) mutated to Alanine (S2814A). S2814A CASP mice did not show increased apoptosis. Consistent with RyR2 phosphorylation‐dependent enhancement in diastolic SR Ca2+ release leading to mitochondrial Ca2+ overload, mitochondrial Ca2+ retention capacity was reduced in mitochondria isolated from WT‐CASP compared to Sham and this reduction was absent in mitochondria from CASP S2814A or dantrolene‐treated mice. We conclude that in sepsis, CaMKII‐dependent RyR2 phosphorylation results in diastolic Ca2+ release from SR which leads to mitochondrial Ca2+ overload and apoptosis.  相似文献   

14.
    
The vulnerable plaque is a key distinguishing feature of atherosclerotic lesions that can cause acute atherothrombotic vascular disease. This study was designed to explore the effect of autophagy on mitochondria‐mediated macrophage apoptosis and vulnerable plaques. Here, we generated the mouse model of vulnerable carotid plaque in ApoE?/? mice. Application of ApoE?/? mice with rapamycin (an autophagy inducer) inhibited necrotic core formation in vulnerable plaques by decreasing macrophage apoptosis. However, 3‐methyladenine (an autophagy inhibitor) promoted plaque vulnerability through deteriorating these indexes. To further explore the mechanism of autophagy on macrophage apoptosis, we used macrophage apoptosis model in vitro and found that 7‐ketocholesterol (7‐KC, one of the primary oxysterols in oxLDL) caused macrophage apoptosis with concomitant impairment of mitochondria, characterized by the impairment of mitochondrial ultrastructure, cytochrome c release, mitochondrial potential dissipation, mitochondrial fragmentation, excessive ROS generation and both caspase‐9 and caspase‐3 activation. Interestingly, such mitochondrial apoptotic responses were ameliorated by autophagy activator, but exacerbated by autophagy inhibitor. Finally, we found that MAPK‐NF‐κB signalling pathway was involved in autophagy modulation of 7‐KC–induced macrophage apoptosis. So, we provide strong evidence for the potential therapeutic benefit of macrophage autophagy in regulating mitochondria‐mediated apoptosis and inhibiting necrotic core formation in vulnerable plaques.  相似文献   

15.
    
Stannin (Snn) was discovered using subtractive hybridization methodology designed to find gene products related to selective organotin toxicity and apoptosis. The cDNAs for Snn were first isolated from brain tissues sensitive to trimethyltin, and were subsequently used to localize, characterize, and identify genomic DNA, and other gene products of Snn. Snn is a highly conserved, 88 amino acid protein found primarily in vertebrates. There is a minor divergence in the C-terminal sequence between amphibians and primates, but a nearly complete conservation of the first 60 residues in all vertebrates sequenced to date. Snn is a membrane-bound protein and is localized, in part, to the mitochondria and other vesicular organelles, suggesting that both localization and conservation are significant for the overall function of the protein. The structure of Snn in a micellar environment and its architecture in lipid bilayers have been determined using a combination of solution and solid-state NMR, respectively. Snn structure comprised a single transmembrane domain (residues 10-33), a 28-residue linker region from residues 34-60 that contains a conserved CXC metal binding motif and a putative 14-3-3xi binding region, and a cytoplasmic helix (residues 61-79), which is partially embedded into the membrane. Of primary interest is understanding how this highly-conserved peptide with an interesting structure and cellular localization transmits both normal and potentially toxic signals within the cell. Evidence to date suggests that organotins such as trimethyltin interact with the CXC region of Snn, which is vicinal to the putative 14-3-3 binding site. In vitro transfection analyses and microarray experiments have inferred a possible role of Snn in several key signaling systems, including activation of the p38-ERK cascade, p53-dependent pathways, and 14-3-3xi protein-mediated processes. TNFalpha can induce Snn mRNA expression in endothelial cells in a PKC-epsilon dependent manner. Studies with Snn siRNA suggest that this protein may be involved in growth regulation, since inhibition of Snn expression alone leads to reduced endothelial cells growth and induction of COP-1, a negative regulator of p53 function. A key piece of the puzzle, however, is how and why such a highly-conserved protein, localized to mitochondria, interacts with other regulatory proteins to alter growth and apoptosis. By knowing the structure, location, and possible signaling pathways involved, we propose that Snn constitutes an important sensor of mitochondrial damage, and plays a key role in the mediation of cross-talk between mitochondrial and nuclear compartments in specific cell types.  相似文献   

16.
犬细小病毒NS1 非结构蛋白可诱导细胞凋亡   总被引:1,自引:0,他引:1       下载免费PDF全文
【目的】研究犬细小病毒(Canine parvovirus,CPV)非结构蛋白NS1在CPV引起宿主细胞凋亡中的作用,初步探讨CPV引起细胞凋亡的机制。【方法】首先采用PCR方法从犬细小病毒基因组中扩增NS1编码基因,然后利用pcDNA3.1A质粒构建NS1真核表达载体pcDNA-NS1,并通过HEK293FT细胞瞬时表达NS1重组蛋白,用Western-blot检测以确定重组NS1蛋白能否在真核细胞中表达。然后用CPV感染和用pcDNA-NS1表达载体转染F81宿主细胞,通过AnnexinV/PI双染法检测磷脂酰丝氨酸外翻和通过化学发光法检测caspase-3/7活性,分析感染CPV或转染NS1基因对F81宿主细胞凋亡的影响。【结果】结果表明,本实验扩增的NS1基因序列与GenBank的序列一致,构建的表达载体结构正确,并能够介导NS1基因在真核细胞中表达。感染CPV和转染NS1基因均能诱导F81细胞膜磷脂酰丝氨酸外翻和明显提高细胞内caspase-3/7的活性,表明CPV和NS1蛋白均能引起细胞的凋亡。【结论】CPV诱导宿主细胞凋亡与其编码的NS1非结构蛋白有关。  相似文献   

17.
    
Sevoflurane is the most commonly used general anesthetic in pediatric patients. But preclinical studies indicate that sevoflurane could have neurotoxicity in newborn and old animals, and this raises concern regarding its safety. In this study, we explored the potential mechanisms of sevoflurane-induced neurotoxicity in human SH-SY5Y neuronal cells. We showed that prolonged exposure to 2% sevoflurane caused a significant increase in the Bag family protein Bag2 in a time- and dose-dependent manner. We investigated the possible role of Bag2 upon exposure to sevoflurane by silencing Bag2 in neuronal cells. Knockdown of Bag2 caused increased overall reactive oxygen species (ROS) and generation of lipid peroxidation products 4-hydroxynonenal (4-HNE). Upon sevoflurane exposure, Bag2-silent cells have reduced glutathione (GSH) and glutathione peroxidase activity. Under the sevoflurane treatment, Bag2-deficient cells have reduced mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) production, while knockdown cells have less viability and higher lactic dehydrogenase (LDH) release as well as a higher percentage of apoptotic cells. The knockdown cells also had higher levels of mitochondrial cytochrome C release, a higher ratio of Bax/Bcl-2 and increased caspase cleavage by sevoflurane. Overall, our data support an important role of Bag2 in sevoflurane-induced neurotoxicity.  相似文献   

18.
  总被引:2,自引:0,他引:2  
Ren Y  Xiong L  Wu JR 《Cell research》2003,13(4):295-300
Tripchlorolide (TC) is a potent antitumor reagent purified from a Chinese herb Tripterygium Wilfordii Hook. f.. However, its cellular effects and mechanism of action are unknown. We showed here that TC induced apoptosis of Chinese Hamster Ovary (CHO) cells in time- and dose-dependent manners. TC resulted in the degradation of Bcl-2, the translocation of Bax from the cytosol to mitochondria, and the release of cytochrome c from mitochondria. Stable overexpression of human Bcl-2 could reduce the apoptosis of TC-treated cells by blocking the translocation of Bax and the release of cytochrome c. These results indicate that TC induces apoptosis of CHO cell by activating the mitochondrion-mediated apoptotic pathway involving the proteins of Bcl-2 family and cytochrome c.  相似文献   

19.
  总被引:5,自引:0,他引:5  
Cancer cells are characterized by either an increased ability to proliferate or a diminished capacity to undergo programmed cell death. PTEN is instrumental in regulating the balance between growth and death in several cell types and has been described as a tumor suppressor. The chromosome arm on which PTEN is located is deleted in a subset of human osteosarcoma tumors. Therefore, we predicted that the loss of PTEN expression was contributing to increased Akt activation and the subsequent growth and survival of osteosarcoma tumor cells. Immunoblot analyses of several human osteosarcoma cell lines and normal osteoblasts revealed relatively abundant levels of PTEN. Furthermore, stimulation of cell growth or induction of apoptosis in osteosarcoma cells failed to affect PTEN expression or activity. Therefore, routine regulation of osteosarcoma cell growth and survival appears to be independent of changes in PTEN. Subsequently, the activation of a downstream target of PTEN activity, the survival factor Akt, was analyzed. Inappropriate activation of Akt could bypass the negative regulation by PTEN. Analyses of Akt expression in several osteosarcoma cell lines and normal osteoblasts revealed uniformly low basal levels of phosphorylated Akt. The levels of phosphorylated Akt did not increase following growth stimulation. In addition, osteosarcoma cell growth was unaffected by inhibitors of phosphatidylinositol-3 kinase, an upstream activator of the Akt signaling pathway. These data further suggest that the Akt pathway is not the predominant signaling cascade required for osteoblastic growth. However, inhibition of PTEN activity resulted in increased levels of Akt phosphorylation and enhanced cell proliferation. These data suggest that while abundant levels of PTEN normally maintain Akt in an inactive form in osteoblastic cells, the Akt signaling pathway is intact and functional.  相似文献   

20.
    
Osteosarcoma (OS) is one of the aggressive malignancies for young adults. Cdc20 (cell division cycle 20 homologue) has been reported to exhibit an oncogenic role in OS, suggesting that inhibition of Cdc20 could be a novel strategy for the treatment of OS. Since Cdc20 inhibitors have side effects, it is important to discover the new CDC20 inhibitors with non-toxic nature. In the present study, we determine whether natural agent diosgenin is an inhibitor of Cdc20 in OS cells. We performed MTT, FACS, Wound healing assay, Transwell, Western blotting, transfection assays in our study. We found diosgenin inhibited cell growth and induced apoptosis. Moreover, diosgenin exposure led to inhibition of cell migration and invasion. Notably, diosgenin inhibited the expression of Cdc20 in OS cells. Overexpression of Cdc20 abrogated the inhibition of cell growth and invasion induced by diosgenin. Our data reveal that inhibition of Cdc20 by diosgenin could be helpful for the treatment of patients with OS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号