首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Prostate cancer is a major cause of cancer-related death in males. Wnt/β-catenin signaling plays a critical role in the pathogenesis of this disease by regulating angiogenesis, drug resistance, cell proliferation, and apoptosis. Suppression of Wnt canonical or noncanonical signaling pathways via Wnt biological or pharmacological antagonists is a potentially novel therapeutic approach for patients with prostate cancer. This review summarizes the role of Wnt signaling inhibitors in the pathogenesis of prostate cancer for a better understanding and hence a better management of this disease.  相似文献   

4.
5.
6.
The adenosine A2B receptor is the least well characterized of the four adenosine subtypes due to the lack of potent and selective agonists and antagonists. Despite the widespread distribution of A2B receptor mRNA, little information is available with regard to their function. The characterization of A2B receptors, through radioligand binding studies, has been performed, until now, by using low-affinity and non-selective antagonists like 1,3-dipropyl-8-cyclopentylxanthine ([3H]DPCPX),(4-(2-[7-amino-2-(2-furyl)-[1,2,4]triazolo-[2,3-a][1,3,5]triazin-5-ylamino]ethyl)-phenol ([3H]ZM 241385) and 3-(3,4-aminobenzyl)-8-(4-oxyacetate)phenyl-1-propyl-xanthine ([125I]ABOPX). Recently, high-affinity radioligands for A2B receptors, [N-(4-cyanophenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)-phenoxy]acetamide ([3H]MRS 1754), N-(2-(2-Phenyl-6-[4-(2,2,3,3-tetratritrio-3-phenylpropyl)-piperazine-1-carbonyl]-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino)-ethyl)-acetamide ([3H]OSIP339391) and N-benzo[1,3]dioxol-5-yl-2-[5-(1,3-dipropyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl)-1-methyl-1H-pyrazol-3-yloxy]-acetamide] ([3H]MRE 2029F20), have been introduced. This minireview offers an overview of these recently developed radioligands and the most important applications of drugs towards A2B receptors.  相似文献   

7.
Breast cancer is the most common cause of cancer death in women and presents a serious therapeutic challenge worldwide. Traditional treatments are less successful at targeting cancer tumors, leading to recurrent treatment-resistant secondary malignancies. Oncolytic virotherapy (OV) is a novel anticancer strategy with therapeutic implications at targeting cancer cells by using mechanisms that differ from conventional therapies. Administration of OVs either alone or in combination with standard therapies provide new insights regarding the effectiveness and improvement of treatment responses for breast cancer patients. This review summarizes cellular, animal and clinical studies investigating therapeutic potency of oncolytic virotherapy in breast cancer treatment for a better understanding and hence a better management of this disease.  相似文献   

8.
This study was designed to localize adenosine receptors and to provide evidence that specific receptors are active only in either uncapacitated or capacitated mouse spermatozoa, where they play a role in regulating cAMP production. Using specific antibodies, stimulatory A(2A) receptors were localized primarily on the acrosomal cap region and the flagellar principal piece. Interestingly, the staining was much more pronounced in uncapacitated than in capacitated spermatozoa, suggesting capacitation-dependent changes in epitope accessibility. A(1) receptors showed a very similar distribution, but the staining was markedly greater in capacitated than in uncapacitated cells. After addition of purified decapacitation factor (DF) to capacitated cells, strong staining for A(2A) was regained, suggesting reversibility in epitope accessibility. Chlortetracycline analysis revealed that an agonist specific for A(2A) receptors had no detectable effect on capacitated cells, but after DF-induced decapacitation, the agonist then stimulated capacitation. That agonist also significantly stimulated cAMP production in uncapacitated cells, had no effect on capacitated cells, but regained the ability to stimulate cAMP in the latter following DF treatment. In contrast, an A(1) agonist inhibited cAMP in capacitated cells. These results indicate that specific adenosine receptors function in a reversible manner in one or other capacitation state, resulting in regulation of cAMP.  相似文献   

9.
10.
Development of diabetes is associated with altered expression of adenosine receptors (ARs). Some of these alterations might be attributed to changes in insulin concentration. This study was undertaken to investigate the possible insulin effect on ARs level, and to determine the signaling pathway utilized by insulin to regulate the expression of ARs in rat B lymphocytes. Western blot analysis of B lymphocytes protein extracts indicated that all four ARs were present at detectable levels in the cells cultured for 24 h without insulin (≤10?11 M), although the protein band of A2A‐AR was barely visible. Inclusion of insulin (10?8 M) in the culture medium resulted in an increase of A1‐AR and A2A‐AR protein levels and a significant decrease of A2B‐AR protein, whereas the protein level of A3‐AR remained unchanged. Alterations in the ARs protein content were accompanied by changes in the ARs mRNA levels. Increase of the insulin concentration from 10?11 to 10?8 M resulted in 50% decrease of A2B‐AR mRNA level and two‐, and threefold increase of A1‐AR and A2A‐AR mRNA levels, respectively. Pretreatment of B cells with cycloheximide completely blocked the insulin action on A1‐AR and A2A‐AR mRNA, but not on A2B‐AR expression. Detailed pharmacological analysis demonstrated that insulin‐induced A1‐AR and A2A‐AR mRNA expression through the Ras/Raf‐1/MEK/ERK pathway. The insulin effect on A2B‐AR expression was blocked by p38 MAP kinase inhibitor (SB 203580). Concluding, elevated insulin concentration differentially affects the expression of ARs in B lymphocytes in a fashion that might enhance the various immunomodulatory effects of adenosine. J. Cell. Biochem. 109: 396–405, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
1.  Chronic ingestion of caffeine by male NIH strain mice alters the density of a variety of central receptors.
2.  The density of cortical A1 adenosine receptors is increased by 20%, while the density of striatal A2A adenosine receptors is unaltered.
3.  The densities of cortical 1 and cerebellar 2 adrenergic receptors are reduced byca. 25%, while the densities of cortical 1 and 2 adrenergic receptors are not significantly altered. Densities of striatal D1 and D2 dopaminergic receptors are unaltered. The densities of cortical 5 HT1 and 5 HT2 serotonergic receptors are increased by 26–30%. Densities of cortical muscarinic and nicotinic receptors are increased by 40–50%. The density of cortical benzodiazepine-binding sites associated with GABAA receptors is increased by 65%, and the affinity appears slightly decreased. The density of cortical MK-801 sites associated with NMDA-glutaminergic receptors appear unaltered.
4.  The density of cortical nitrendipine-binding sites associated with calcium channels is increased by 18%.
5.  The results indicate that chronic ingestion of caffeine equivalent to about 100 mg/kg/day in mice causes a wide range of biochemical alterations in the central nervous system.
  相似文献   

12.
Death receptor-induced cell death in prostate cancer   总被引:2,自引:0,他引:2  
Prostate cancer mortality results from metastasis and is often coupled with progression from androgen-dependent to androgen-independent growth. Unfortunately, no effective treatment for metastatic prostate cancer increasing patient survival is available. The absence of effective therapies reflects in part a lack of knowledge about the molecular mechanisms involved in the development and progression of this disease. Apoptosis, or programmed cell death, is a cell suicide mechanism that enables multicellular organisms to regulate cell number in tissues. Inhibition of apoptosis appears to be a critical pathophysiological factor contributing to the development and progression of prostate cancer. Understanding the mechanism(s) of apoptosis inhibition may be the basis for developing more effective therapeutic approaches. Our understanding of apoptosis in prostate cancer is relatively limited when compared to other malignancies, in particular, hematopoietic tumors. Thus, a clear need for a better understanding of apoptosis in this malignancy remains. In this review we have focused on what is known about apoptosis in prostate cancer and, more specifically, the receptor/ligand-mediated pathways of apoptosis as potential therapeutic targets.  相似文献   

13.
TNF-related apoptosis-inducing ligand (TRAIL/APO-2L) is a typical member of the TNF ligand family that induces apoptosis by activating the death receptors TRAIL-R1 and TRAIL-R2. TRAIL has attracted great attention in recent years as a promising anti cancer reagent because recombinant soluble TRAIL derivatives induce apoptosis in a broad range of tumor cells but not or only rarely in non-transformed cells. In this review we will address the putative role of TRAIL in cancer treatment in the light of the emerging importance of TRAIL in tumor surveillance and discuss the molecular basis of the cooperation of TRAIL and chemotherapeutic drugs. In particular, we debate controversial data in the literature concerning the cytotoxicity of different TRAIL derivatives on primary human cells.  相似文献   

14.
Aberrant microRNA (miR) expression is implicated in multiple human malignancies. miR-21, acting as a proto-oncogene, is involved in a variety of cellular processes and tumorigenesis and is frequently overexpressed in some cancer types. Several tumor suppressors, metastatic, and apoptotic genes have been identified as miR-21 targets, including Ras homolog gene family member B, PTEN, Sprouty2, programmed cell death 4, Integrin-β4, and E-cadherin thereby regulating tumor growth, invasion, and metastasis. There is a growing evidence that miR-21 expression is associated with clinical outcomes in patients with colorectal cancer (CRC). In this review, we summarize the potential diagnostic, prognostic, and therapeutic values of miR-21 in CRC progression for a better understanding and hence a better management of this disease.  相似文献   

15.
This study investigated the interactive effects of acute exercise and adenosine receptor agonist and antagonist on antioxidant enzyme activities, glutathione and lipid peroxidation in the heart of the rat. Male Fisher-344 rats were divided into six groups and treated as follows: (1) saline control; (2) acute exercise (100% VO2max); (3) R-Phenyl isopropyl adenosine (R-PIA) (3.46 mol/kg, i.p.); (4) theophylline (1.70 mol/kg, i.p.) plus acute exercise; (5) theophylline plus R-PIA; and (6) theophylline. Animals were sacrificed 1 h after treatments; hearts were isolated and analyzed. The results show that acute exercise as well as adenosine receptor agonist R-PIA significantly enhanced cardiac superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione reductase (GR) activity by 36–135% and 16–51%, respectively. Adenosine receptor agonist R-PIA significantly decreased cardiac GSSG concentration and enhanced GSH/GSSG ratio by 22 and 30%, respectively. Whereas theophylline treatment blocked the activation of antioxidant enzyme activities enhanced by acute exercise and R-PIA. Theophylline treatment significantly increased lipid peroxidation by 43% in the heart of exercised rats. The study concluded that the adenosine receptors are involved in the upregulation of cardiac antioxidant defense system and attenuation of lipid peroxidation due to acute exercise in rats. (Mol Cell Biochem 270: 209–214, 2005)  相似文献   

16.
Cancer as a multifactorial and smart disease is now considered a challenging problem. Despite many investigations on drug discovery, it remains incurable, in part, due to insufficient understanding of its special mechanisms. For the first time, we collaterally investigated the effect of acidosis on the contribution of apoptosis, necrosis, and autophagy in MDA-MB 231 cells. Our data showed that necrosis, apoptosis, and intracellular reactive oxygen species production drastically decreased from 48 to 72 hr while cell viability and autophagy increased along with a gap between the percentages. Eventually, the decrease of necrosis and apoptosis was related to upregulation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and fatty acid synthetase, respectively. It seems that at the early stage of cancer progression, apoptosis is the main mechanism of cell mortality and afterward autophagy would be the main mechanism of cell survival. Therefore, at the acute phase of cancer, apoptotic inducer medications would be effective while at the chronic phase of cancer progression, autophagy inhibitor medication would be added as well. This eventually means that autophagy acts as both cell death and survival mechanisms at the onset of cancer progression with the approach towards cell survival. Besides other unknown cell survival mechanisms are involved in cell viability, except for apoptosis and necrosis inhibition and autophagy improvement. This study reiterates the inefficaciousness of autophagy inhibitor's medication at the onset of disease. It also emphasizes discovering other cell death mechanisms for cancer cell adaptation at the onset of disease with the aim of their targeting in cancer invasion therapy.  相似文献   

17.
Kim SK  Riley L  Abrol R  Jacobson KA  Goddard WA 《Proteins》2011,79(6):1878-1897
We used the GEnSeMBLE Monte Carlo method to predict ensemble of the 20 best packings (helix rotations and tilts) based on the neutral total energy (E) from a vast number (10 trillion) of potential packings for each of the four subtypes of the adenosine G protein-coupled receptors (GPCRs), which are involved in many cytoprotective functions. We then used the DarwinDock Monte Carlo methods to predict the binding pose for the human A(3) adenosine receptor (hAA(3)R) for subtype selective agonists and antagonists. We found that all four A(3) agonists stabilize the 15th lowest conformation of apo-hAA(3)R while also binding strongly to the 1st and 3rd. In contrast the four A(3) antagonists stabilize the 2nd or 3rd lowest conformation. These results show that different ligands can stabilize different GPCR conformations, which will likely affect function, complicating the design of functionally unique ligands. Interestingly all agonists lead to a trans χ1 angle for W6.48 that experiments on other GPCRs associate with G-protein activation while all 20 apo-AA(3)R conformations have a W6.48 gauche+ χ1 angle associated experimentally with inactive GPCRs for other systems. Thus docking calculations have identified critical ligand-GPCR structures involved with activation. We found that the predicted binding site for selective agonist Cl-IB-MECA to the predicted structure of hAA(3)R shows favorable interactions to three subtype variable residues, I253(6.58), V169(EL2), and Q167(EL2), while the predicted structure for hAA(2A)R shows weakened to the corresponding amino acids: T256(6.58), E169(EL2), and L167(EL2), explaining the observed subtype selectivity.  相似文献   

18.
G protein-coupled receptors are known to form homo- and heteromers at the plasma membrane, but the stoichiometry of these receptor oligomers are relatively unknown. Here, by using bimolecular fluorescence complementation, we visualized for the first time the occurrence of heterodimers of metabotropic glutamate mGlu5 receptors (mGlu5R) and dopamine D2 receptors (D2R) in living cells. Furthermore, the combination of bimolecular fluorescence complementation and bioluminescence resonance energy transfer techniques, as well as the sequential resonance energy transfer technique, allowed us to detect the occurrence receptor oligomers containing more than two protomers, mGlu5R, D2R and adenosine A2A receptor (A2AR). Interestingly, by using high-resolution immunoelectron microscopy we could confirm that the three receptors co-distribute within the extrasynaptic plasma membrane of the same dendritic spines of asymmetrical, putative glutamatergic, striatal synapses. Also, co-immunoprecipitation experiments in native tissue demonstrated the existence of an association of mGlu5R, D2R and A2AR in rat striatum homogenates. Overall, these results provide new insights into the molecular composition of G protein-coupled receptor oligomers in general and the mGlu5R/D2R/A2AR oligomer in particular, a receptor oligomer that might constitute an important target for the treatment of some neuropsychiatric disorders.  相似文献   

19.
It has been observed that a cytokine synthesis inhibitor, pentoxifylline, prevents the apoptotic processes taking place in the amygdala following myocardial infarction. However, it is unknown if the cardioprotective effect of A2A adenosine receptor agonist, CGS21680, which reduces cytokine synthesis, would lead to such amygdala apoptosis regression. Thus, this study was designed to investigate whether cardioprotective A2A adenosine receptor activation reduces apoptosis in the amygdala following myocardial infarction. Anesthetized rats were subjected to left anterior descending coronary artery occlusion for 40 min, followed by 72 h of reperfusion. The A2A agonist CGS21680 (0.2 μg/kg/min i.v.) was administered continuously for 120 min, starting (1) five minutes prior to instituting reperfusion (Early) or (2) five minutes after the beginning of reperfusion (Late). After reperfusion, myocardial infarct size was determined and the amygdala was dissected from the brain. Infarct size was reduced significantly in the Early compared to the Control group (34.6 ± 1.8% and 52.3 ± 2.8% respectively; p < 0.05), with no difference com-pared to the Late group (40.1 ± 6.1%). Apoptosis regressi-on was documented in the amygdala of the Early group by an enhanced phosphatidylinositol 3-kinase-Akt pathway activation and Bcl-2 expression concurrently to a caspase-3 activation limitation and reduction in TUNEL-positive cells staining. On the other hand, amygdala TUNEL-positive cell numbers were not reduced in the Late group. Moreover, TNFα was significantly reduced in the amygdala of the Early group compared to the Control and Late groups. These results indicate that A2A adenosine receptor stimulation is associated with apoptosis regression in the amygdala following myocardial infarction. This work was supported by Natural Sciences and Engineering Research Council of Canada (NSERC).  相似文献   

20.
Adenosine and its analogs are of particular interest as potential therapeutic agents for treatment of cardiovascular diseases (CVDs). A2 adenosine receptor subtypes (A2a and A2b) are extensively expressed in cardiovascular system, and modulation of these receptors using A2 adenosine receptor agonists or antagonists regulates heart rate, blood pressure, heart rate variability, and cardiovascular toxicity during both normoxia and hypoxia conditions. Regulation of A2 adenosine receptor signaling via specific and novel pharmacological regulators is a potentially novel therapeutic approach for a better understanding and hence a better management of CVDs. This review summarizes the role of pharmacological A2 adenosine receptor regulators in the pathogenesis of CVDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号