首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
Epithelial-to-mesenchymal transition (EMT), an important cellular process, occurs during cancer development and progression, has a crucial role in metastasis by enhancing the motility of tumor cells. Dioscin is a polyphenolic component isolated from Phyllanthus amarus, which exhibits a wide range of pharmacological and physiological activities, such as anti-tumor, anti-inflammatory, anti-obesity, anti-fungal, and anti-viral activities. However, the possible role of dioscin in the EMT is unclear. We investigated the suppressive effect of dioscin on the EMT. Transforming growth factor-beta 1 (TGF-β1) is known to induce EMT in a number of cancer cell types and promote lung adenocarcinoma migration and invasion. To verify the inhibitory role of dioscin in lung cancer migration and invasion, we investigated the use of dioscin as inhibitors of TGF-β1-induced EMT in A549 lung cancer cells in vitro. Here, we found that dioscin prominently increased expression of the epithelial marker E-cadherin and expression of the mesenchymal marker N-cadherin and Snail during the TGF-β1-induced EMT. In addition, dioscin inhibited the TGF-β1-induced increase in cell migration and invasion of A549 lung cancer cells. Also, dioscin remarkably inhibited TGF-β1-regulated activation of MMP-2/9, Smad2, and p38. Taken together, our findings provide new evidence that dioscin suppresses lung cancer migration, and invasion in vitro by inhibiting the TGF-β1-induced EMT.  相似文献   

3.
4.
Cancer cells undergo epithelial-mesenchymal transition (EMT) during invasion and metastasis. Although transforming growth factor-β (TGF-β) and pro-inflammatory cytokines have been implicated in EMT, the underlying molecular mechanisms remain to be elucidated. Here, we studied the effects of proinflammatory cytokines derived from the mouse macrophage cell line RAW 264.7 on TGF-β-induced EMT in A549 lung cancer cells. Co-culture and treatment with conditioned medium of RAW 264.7 cells enhanced a subset of TGF-β-induced EMT phenotypes in A549 cells, including changes in cell morphology and induction of mesenchymal marker expression. These effects were increased by the treatment of RAW 264.7 cells with lipopolysaccharide, which also induced the expression of various proinflammatory cytokines, including TNF-α and IL-1β. The effects of conditioned medium of RAW 264.7 cells were partially inhibited by a TNF-α neutralizing antibody. Dehydroxy methyl epoxyquinomicin, a selective inhibitor of NFκB, partially inhibited the enhancement of fibronectin expression by TGF-β, TNF-α, and IL-1β, but not of N-cadherin expression. Effects of other pharmacological inhibitors also suggested complex regulatory mechanisms of the TGF-β-induced EMT phenotype by TNF-α stimulation. These findings provide direct evidence of the effects of RAW 264.7-derived TNF-α on TGF-β-induced EMT in A549 cells, which is transduced in part by NFκB signalling.  相似文献   

5.
6.
Atrial natriuretic peptide (ANP) is increasingly expressed on airway and inhibits pulmonary arterial remodeling. However, the role of ANP in remodeling of respiratory system is still unclear. The role of ANP on airway remodeling and the possible mechanism was explored in this study. Both human bronchial epithelial 16HBE-14o cells and alveolar epithelial A549 cells were stimulated by TGF-β1, ANP, cGMP inhibitor, PKG inhibitor, and cGMP analogue. The expressions of epithelial markers, mesenchymal markers, and Smad3 were assessed by quantitative real-time PCR and western blotting. Immunohistochemical staining was employed to assess Smad3 expression once it was silenced by siRNA in 16HBE-14o or A549 cells. Our results showed that the mRNA and protein expressions of E-Cadherin were decreased, whereas α-SMA expressions were increased after induction by TGF-β1 in 16HBE-14o and A549 cells. The E-Cadherin expressions were increased and α-SMA expressions were decreased after ANP stimulation. Inhibition of cGMP or PKG decreased E-Cadherin expression but increased α-SMA expression, which could be reversed by cGMP analogue. Moreover, the phosphorylated Smad3 expression was consistent with α-SMA expression. After smad3 was silenced, Smad3 was mostly expressed in cytoplasm instead of nucleus as non-silenced cells during epithelial-mesenchymal transition (EMT). In conclusion, ANP inhibits TGF-β1-induced EMT in 16HBE-14o and A549 cells through cGMP/PKG signaling, by which it targets TGF-β1/Smad3 via attenuating phosphorylation of Smad3. These findings suggest the potential of ANP in the treatment on pulmonary diseases with airway remodeling.  相似文献   

7.

Background

Transforming growth factor β1 (TGF-β1)-mediated epithelial mesenchymal transition (EMT) of alveolar epithelial cells (AEC) may contribute to lung fibrosis. Since PPARγ ligands have been shown to inhibit fibroblast activation by TGF-β1, we assessed the ability of the thiazolidinediones rosiglitazone (RGZ) and ciglitazone (CGZ) to regulate TGF-β1-mediated EMT of A549 cells, assessing changes in cell morphology, and expression of cell adhesion molecules E-cadherin (epithelial cell marker) and N-cadherin (mesenchymal cell marker), and collagen 1α1 (COL1A1), CTGF and MMP-2 mRNA.

Methods

Serum-deprived A549 cells (human AEC cell line) were pre-incubated with RGZ and CGZ (1 - 30 μM) in the absence or presence of the PPARγ antagonist GW9662 (10 μM) before TGFβ-1 (0.075-7.5 ng/ml) treatment for up to 72 hrs. Changes in E-cadherin, N-cadherin and phosphorylated Smad2 and Smad3 levels were analysed by Western blot, and changes in mRNA levels including COL1A1 assessed by RT-PCR.

Results

TGFβ-1 (2.5 ng/ml)-induced reductions in E-cadherin expression were associated with a loss of epithelial morphology and cell-cell contact. Concomitant increases in N-cadherin, MMP-2, CTGF and COL1A1 were evident in predominantly elongated fibroblast-like cells. Neither RGZ nor CGZ prevented TGFβ1-induced changes in cell morphology, and PPARγ-dependent inhibitory effects of both ligands on changes in E-cadherin were only evident at submaximal TGF-β1 (0.25 ng/ml). However, both RGZ and CGZ inhibited the marked elevation of N-cadherin and COL1A1 induced by TGF-β1 (2.5 ng/ml), with effects on COL1A1 prevented by GW9662. Phosphorylation of Smad2 and Smad3 by TGF-β1 was not inhibited by RGZ or CGZ.

Conclusions

RGZ and CGZ inhibited profibrotic changes in TGF-β1-stimulated A549 cells independently of inhibition of Smad phosphorylation. Their inhibitory effects on changes in collagen I and E-cadherin, but not N-cadherin or CTGF, appeared to be PPARγ-dependent. Further studies are required to unravel additional mechanisms of inhibition of TGF-β1 signalling by thiazolidinediones and their implications for the contribution of EMT to lung fibrosis.  相似文献   

8.
Lefty is a novel member of the transforming growth factor (TGF) supergene family which has the potential to antagonise actions of TGF-β1 - the main factor driving fibrotic disease in the kidney and in other organs. TGF-β1 can induce fibrosis through several mechanisms, including epithelial-mesenchymal transition (EMT) which contributes to myofibroblast accumulation in the renal interstitium. This study examined whether Lefty can antagonise TGF-β1 mediated EMT. A rat tubular epithelial cell line (NRK52E) was stably transfected with a Lefty expression plasmid (52E-Lefty) or control plasmid (52E-Control). 52E-Control cells underwent TGF-β1 induced EMT with up-regulation of α-smooth muscle actin (α-SMA), down-regulation of E-cadherin, and transition to an elongated fibroblast-like morphology. In contrast, 52E-Lefty cells were substantially protected from TGF-β1 induced EMT. Analysis of signalling pathways showed that 52E-Lefty cells had a marked reduction in TGF-β1 induced Smad activity and suppression of the secondary phase of JNK (but not p38) signalling. Treatment of NRK52E cells with a JNK inhibitor was shown to suppress TGF-β1 induced EMT. In conclusion, Lefty can antagonise TGF-β1 mediated EMT in renal tubular epithelial cells. Lefty may have potential as an anti-fibrotic molecule in the treatment of renal fibrosis.  相似文献   

9.
Transforming growth factor-β (TGF-β)-induced epithelial–mesenchymal transition is a critical process in the initiation of metastasis of various types of cancer. Chidamide is a class I histone deacetylase inhibitor with anti-tumor activity. This study investigated the effects of chidamide on TGF-β-mediated suppression of E-cadherin expression in adenocarcinomic lung epithelial cells and the molecular mechanisms involved in these effects. Western blot analysis, confocal microscopy, Quantitative methyl-specific PCR and bisulfite sequencing were used to evaluate the effects of different treatments on chidamide ameliorating TGF-β induced-E-cadherin loss. H3 acetylation binding to the promoter of E-cadherin was detected by chromatin immunoprecipitations (CHIP). We found that chidamide reduced the level of lung cancer cell migration observed using a Boyden chamber assay (as an indicator of metastatic potential). Chidamide inhibited TGF-β-induced SMAD2 phosphorylation and attenuated TGF-β-induced loss of E-cadherin expression in lung cancer cells by Western blotting and confocal microscopy, respectively. Quantitative methyl-specific PCR and bisulfite sequencing revealed that TGF-β-enhanced E-cadherin promoter methylation was ameliorated in cells treated with chidamide. We demonstrated that histone H3 deacetylation within the E-cadherin promoter was required for TGF-β-induced E-cadherin loss; cell treatment with chidamide increased the H3 acetylation detected by CHIP. Taken together, our results demonstrate that TGF-β suppressed E-cadherin expression by regulating promoter methylation and histone H3 acetylation. Chidamide significantly enhanced E-cadherin expression in TGF-β-treated cells and inhibited lung cancer cell migration. These findings indicate that chidamide has a potential therapeutic use due to its capacity to prevent cancer cell metastasis.  相似文献   

10.
Catalpol, one of the main active ingredients isolated from Rehmannia glutinosa, was reported to possess anticancer activity. However, the role of catalpol in transforming growth factor β1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) in human non–small-cell lung cancer (NSCLC) cells has not been elucidated. The objective of this study was to investigate the effect of catalpol on EMT in human NSCLC cells. Our results showed that catalpol significantly inhibited the TGF-β1-induced cell migration and invasion of A549 cells, as well as repressed matrix metalloproteinase (MMP)2 and MMP9 expression induced by TGF-β1 in A549 cells. In addition, catalpol markedly repressed the EMT process in A549 cells in response to TGF-β1. Furthermore, catalpol prevented the activation of Smad2/3 and nuclear factor κB (NF-κB) signaling pathways induced by TGF-β1 in A549 cells. In conclusion, these findings indicated that catalpol inhibits TGF-β1-induced EMT in human NSCLC cells through the inactivation of Smad2/3 and NF-κB signaling pathways. Thus, catalpol may be a promising agent for the treatment of NSCLC.  相似文献   

11.
Wnt/β-catenin signaling plays an important role not only in cancer, but also in cancer stem cells. In this study, we found that β-catenin and OCT-4 was highly expressed in cisplatin (DDP) selected A549 cells. Stimulating A549 cells with lithium chloride (LiCl) resulted in accumulation of β-catenin and up-regulation of a typical Wnt target gene cyclin D1. This stimulation also significantly enhanced proliferation, clone formation, migration and drug resistance abilities in A549 cells. Moreover, the up-regulation of OCT-4, a stem cell marker, was observed through real-time PCR and Western blotting. In a reverse approach, we inhibited Wnt signaling by knocking down the expression of β-catenin using RNA interference technology. This inhibition resulted in down-regulation of the Wnt target gene cyclin D1 as well as the proliferation, clone formation, migration and drug resistance abilities. Meanwhile, the expression of OCT-4 was reduced after the inhibition of Wnt/β-catenin signaling. Taken together, our study provides strong evidence that canonical Wnt signaling plays an important role in lung cancer stem cell properties, and it also regulates OCT-4, a lung cancer stem cell marker.  相似文献   

12.
13.
Liu Q  Zhang Y  Mao H  Chen W  Luo N  Zhou Q  Chen W  Yu X 《PloS one》2012,7(2):e32009
Transforming growth factor β (TGF-β) induces the process of epithelial-mesenchymal transition (EMT) through the Smad and JNK signaling. However, it is unclear how these pathways interact in the TGF-β1-induced EMT in rat peritoneal mesothelial cells (RPMCs). Here, we show that inhibition of JNK activation by introducing the dominant-negative JNK1 gene attenuates the TGF-β1-down-regulated E-cadherin expression, and TGF-β1-up-regulated α-SMA, Collagen I, and PAI-1 expression, leading to the inhibition of EMT in primarily cultured RPMCs. Furthermore, TGF-β1 induces a bimodal JNK activation with peaks at 10 minutes and 12 hours post treatment in RPMCs. In addition, the inhibition of Smad3 activation by introducing a Smad3 mutant mitigates the TGF-β1-induced second wave, but not the first wave, of JNK1 activation in RPMCs. Moreover, the inhibition of JNK1 activation prevents the TGF-β1-induced Smad3 activation and nuclear translocation, and inhibition of the TGF-β1-induced second wave of JNK activation greatly reduced TGF-β1-induced EMT in RPMCs. These data indicate a crosstalk between the JNK1 and Samd3 pathways during the TGF-β1-induced EMT and fibrotic process in RPMCs. Therefore, our findings may provide new insights into understanding the regulation of the TGF-β1-related JNK and Smad signaling in the development of fibrosis.  相似文献   

14.
Expression of epithelial-mesenchymal transition (EMT) markers has been detected clinically in benign prostatic hyperplasia (BPH) tissues. To understand the molecular basis, we investigated the role of stromal microenvironment in the progression of EMT in BPH cells. First, we used cell culture supernatant from normal prostate stromal WPMY-1 cells to provide supernatant-conditioned medium (WSCM) to culture the BPH-1 cell line. Then, the morphological changes and migratory capacity were detected in BPH-1 cells. The expression of EMT markers was examined in BPH-1 cells by Western blot and immunofluorescent analysis. Finally, to investigate the role of transforming growth factor beta 1 (TGF-β1) in this process, the WSCM-cultured cells were treated with monoclonal antibody against TGF-β1 to study its effect on EMT. We found that the morphology of BPH-1 cells changed to a spindle-like shape after cultured in WSCM, and the levels of E-cadherin and cytokeratin 5/8 (CK5/8) were significantly lower than the cells cultured in ordinary medium. These BPH-1 cells were also tested positive for mesenchymal markers vimentin and a-smooth muscle actin (SMA) as well as Snail. We also found WSCM can increase the migratory capacity of BPH-1 cells. In addition, when they were treated with anti-TGF-β1, upregulation of E-cadherin and CK5/8 levels was observed but no expression of vimentin, alpha-SMA or Snail was detected. Furthermore, phosphorylated-Smad3 expression in WSCM-cultured BPH-1 cells was also suppressed by anti-TGF-β1 treatment. Our results demonstrated that stromal cell supernatant was able to induce EMT in BPH-1 cells, possibly through secreting TGF-β1 to activate Smad signaling. Our results suggest novel molecular targets for clinical treatment of BPH by modification of stromal microenvironment through inhibiting TGF-β1/Smad expression.  相似文献   

15.
16.
Epithelial-mesenchymal-transition (EMT) is a key event for tumor cells to initiate metastasis which lead to switching of E-cadherin to N-cadherin. Resolvins are known to promote the resolution of inflammation and phagocytosis of macrophages. However, the role of resolvins in EMT of cancer is not known. Therefore, we examined the effects of resolvins on transforming growth factor, beta 1 (TGF-β1)-induced EMT. Expression of E-cadherin and N-cadherin in A549 lung cancer cells was evaluated by Western blot and confocal microscopy. Involvement of lipoxin A4 receptor/formyl peptide receptor 2 (ALX/FPR2) was examined by gene silencing. TGF-β1 induced expression of N-cadherin in A549 lung cancer cells, and resolvin D1 and D2 inhibited the expression of N-cadherin at low concentrations (1–100 nM). Resolvin D1 and D2 also suppressed the expression of zinc finger E-box binding homeobox 1 (ZEB1). The effects of resolvin D1 and D2 were confirmed in other lung cancer cell lines such as H838, H1299, and H1703. Resolvin D1 and D2 did not affect the proliferation of A549 lung cancer cells. Resolvin D1 and D2 also suppressed the TGF-β1-induced morphological change. Resolvin D1 and D2 also inhibited the TGF-β1-induced migration and invasion of A549 cells. Resolvin D1 is known to act via ALX/FPR2 and GPR32. Thus, we examined the involvement of ALX/FPR2 and GPR32 in the suppressive effects of resolvin D1 on TGF-β1-induced EMT of A549 cells. Gene silencing of ALX/FPR2 and GPR32 blocked the action of resolvin D1. Overexpression of ALX/FPR2 or GPR32 increased the effects of resolvin D1. These results suggest that resolvin D1 inhibited TGF-β1-induced EMT via ALX/FPR2 and GPR32 by reducing the expression of ZEB1.  相似文献   

17.
18.
19.
20.
The transforming growth factor-β (TGF-β) signaling pathway is often misregulated during cancer progression. In early stages of tumorigenesis, TGF-β acts as a tumor suppressor by inhibiting proliferation and inducing apoptosis. However, as the disease progresses, TGF-β switches to promote tumorigenic cell functions, such as epithelial-mesenchymal transition (EMT) and increased cell motility. Dramatic changes in the cellular microenvironment are also correlated with tumor progression, including an increase in tissue stiffness. However, it is unknown whether these changes in tissue stiffness can regulate the effects of TGF-β. To this end, we examined normal murine mammary gland cells and Madin-Darby canine kidney epithelial cells cultured on polyacrylamide gels with varying rigidity and treated with TGF-β1. Varying matrix rigidity switched the functional response to TGF-β1. Decreasing rigidity increased TGF-β1-induced apoptosis, whereas increasing rigidity resulted in EMT. Matrix rigidity did not change Smad signaling, but instead regulated the PI3K/Akt signaling pathway. Direct genetic and pharmacologic manipulations further demonstrated a role for PI3K/Akt signaling in the apoptotic and EMT responses. These findings demonstrate that matrix rigidity regulates a previously undescribed switch in TGF-β-induced cell functions and provide insight into how changes in tissue mechanics during disease might contribute to the cellular response to TGF-β.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号