首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Osteoarthritis (OA) significantly influences the quality life of people around the world. It is urgent to find an effective way to understand the genetic etiology of OA. We used weighted gene coexpression network analysis (WGCNA) to explore the key genes involved in the subchondral bone pathological process of OA. Fifty gene expression profiles of GSE51588 were downloaded from the Gene Expression Omnibus database. The OA‐associated genes and gene ontologies were acquired from JuniorDoc. Weighted gene coexpression network analysis was used to find disease‐related networks based on 21756 gene expression correlation coefficients, hub‐genes with the highest connectivity in each module were selected, and the correlation between module eigengene and clinical traits was calculated. The genes in the traits‐related gene coexpression modules were subject to functional annotation and pathway enrichment analysis using ClusterProfiler. A total of 73 gene modules were identified, of which, 12 modules were found with high connectivity with clinical traits. Five modules were found with enriched OA‐associated genes. Moreover, 310 OA‐associated genes were found, and 34 of them were among hub‐genes in each module. Consequently, enrichment results indicated some key metabolic pathways, such as extracellular matrix (ECM)‐receptor interaction (hsa04512), focal adhesion (hsa04510), the phosphatidylinositol 3'‐kinase (PI3K)‐Akt signaling pathway (PI3K‐AKT) (hsa04151), transforming growth factor beta pathway, and Wnt pathway. We intended to identify some core genes, collagen (COL)6A3, COL6A1, ITGA11, BAMBI, and HCK, which could influence downstream signaling pathways once they were activated. In this study, we identified important genes within key coexpression modules, which associate with a pathological process of subchondral bone in OA. Functional analysis results could provide important information to understand the mechanism of OA.  相似文献   

2.
Larynx squamous cell carcinoma (LSCC) is the second most aggressive head and neck squamous cell carcinoma. Numerous genes have been identified to be aberrantly expressed during the development of LSCC. However, currently, researchers focus more on the individual molecule and downstream genes, leaving the coexpression among genes and key upstream disease driver genes unexploited. In this study, we applied weighted gene coexpression analysis (WGCNA) to decipher potential hub genes driving the development of LSCC. After downloading of LSCC microarray profile from gene expression omnibus, different expression analysis was performed, which was used to conduct functional enrichment analysis. Then, we applied WGCNA to highlight the hub genes which were relevant to the carcinogenesis and progression. A total of 2858 differentially expressed genes were identified in LSCC samples compared with adjacent non-neoplastic tissues. WGCNA revealed three LSCC set-specific modules having significant Kyoto Encyclopedia of Genes and Genomes enrichment effect, including pink, cyan, and black module. Nine hub genes were identified to be crucial in LSCC onset and progression, which may assist clinical decisions and serve as potential targets for LSCC treatment.  相似文献   

3.
We performed a systematic review of genome‐wide gene expression datasets to identify key genes and functional modules involved in the pathogenesis of systemic lupus erythematosus (SLE) at a systems level. Genome‐wide gene expression datasets involving SLE patients were searched in Gene Expression Omnibus and ArrayExpress databases. Robust rank aggregation (RRA) analysis was used to integrate those public datasets and identify key genes associated with SLE. The weighted gene coexpression network analysis (WGCNA) was adapted to identify functional modules involved in SLE pathogenesis, and the gene ontology enrichment analysis was utilized to explore their functions. The aberrant expressions of several randomly selected key genes were further validated in SLE patients through quantitative real‐time polymerase chain reaction. Fifteen genome‐wide gene expression datasets were finally included, which involved a total of 1,778 SLE patients and 408 healthy controls. A large number of significantly upregulated or downregulated genes were identified through RRA analysis, and some of those genes were novel SLE gene signatures and their molecular roles in etiology of SLE remained vague. WGCNA further successfully identified six main functional modules involved in the pathogenesis of SLE. The most important functional module involved in SLE included 182 genes and mainly enriched in biological processes, including defense response to virus, interferon signaling pathway, and cytokine‐mediated signaling pathway. This study identifies a number of key genes and functional coexpression modules involved in SLE, which provides deepening insights into the molecular mechanism of SLE at a systems level and also provides some promising therapeutic targets.  相似文献   

4.
This study aimed to explore long noncoding RNAs (lncRNAs) implicated in dilated cardiomyopathy (DCM). Ten samples of failing hearts collected from the left ventricles of patients with DCM undergoing heart transplants, and ten control samples obtained from normal heart donors were included in this study. After sequencing, differentially expressed genes (DEGs) and lncRNAs between DCM and controls were screened, followed with functional enrichment analysis and weighted gene coexpression network analysis (WGCNA). Five key lncNRAs were validated through real-time polymerase chain reaction (PCR). Total 1,398 DEGs were identified, including 267 lncRNAs. WGCNA identified seven modules that were significantly correlated with DCM. The top 50 genes in the three modules (black, dark-green, and green–yellow) were significantly correlated with DCM disease state. Four core enrichment lncRNAs, such as AC061961.2, LING01-AS1, and RP11–557H15.4, in the green–yellow module were associated with neurotransmitter secretion. Five core enrichment lncRNAs, such as KB-1299A7.2 and RP11–13E1.5, in the black module were associated with the functions of blood circulation and heart contraction. AC061961.2, LING01-AS1, and RP11–13E1.5 were confirmed to be downregulated in DCM tissues by real-time PCR. The current study suggests that downregulation of AC061961.2, LING01-AS1, and RP11–13E1.5 may be associated with DCM progression, which may serve as key diagnostic biomarkers and therapeutic targets for DCM.  相似文献   

5.
6.
Renal cell carcinoma (RCC) is the most common type of renal tumor, and the clear cell renal cell carcinoma (ccRCC) is the most frequent subtype. In this study, our aim is to identify potential biomarkers that could effectively predict the prognosis and progression of ccRCC. First, we used The Cancer Genome Atlas (TCGA) RNA-sequencing (RNA-seq) data of ccRCC to identify 2370 differentially expressed genes (DEGs). Second, the DEGs were used to construct a coexpression network by weighted gene coexpression network analysis (WGCNA). Moreover, we identified the yellow module, which was strongly related to the histologic grade and pathological stage of ccRCC. Then, the functional annotation of the yellow module and single-samples gene-set enrichment analysis of DEGs were performed and mainly enriched in cell cycle. Subsequently, 18 candidate hub genes were screened through WGCNA and protein–protein interaction (PPI) network analysis. After verification of TCGA’s ccRCC data set, Gene Expression Omnibus (GEO) data set (GSE73731) and tissue validation, we finally identified 15 hub genes that can actually predict the progression of ccRCC. In addition, by using survival analysis, we found that patients of ccRCC with high expression of each hub gene were more likely to have poor prognosis than those with low expression. The receiver operating characteristic curve showed that each hub gene could effectively distinguish between localized and advanced ccRCC. In summary, our study indicates that 15 hub genes have great predictive value for the prognosis and progression of ccRCC, and may contribute to the exploration of the pathogenesis of ccRCC.  相似文献   

7.
Systems-oriented genetic approaches that incorporate gene expression and genotype data are valuable in the quest for genetic regulatory loci underlying complex traits. Gene coexpression network analysis lends itself to identification of entire groups of differentially regulated genes—a highly relevant endeavor in finding the underpinnings of complex traits that are, by definition, polygenic in nature. Here we describe one such approach based on liver gene expression and genotype data from an F2 mouse intercross utilizing weighted gene coexpression network analysis (WGCNA) of gene expression data to identify physiologically relevant modules. We describe two strategies: single-network analysis and differential network analysis. Single-network analysis reveals the presence of a physiologically interesting module that can be found in two distinct mouse crosses. Module quantitative trait loci (mQTLs) that perturb this module were discovered. In addition, we report a list of genetic drivers for this module. Differential network analysis reveals differences in connectivity and module structure between two networks based on the liver expression data of lean and obese mice. Functional annotation of these genes suggests a biological pathway involving epidermal growth factor (EGF). Our results demonstrate the utility of WGCNA in identifying genetic drivers and in finding genetic pathways represented by gene modules. These examples provide evidence that integration of network properties may well help chart the path across the gene–trait chasm. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users. Tova F. Fuller, Anatole Ghazalpour contributed equally to this work.  相似文献   

8.
Gene coexpression network analysis is a powerful “data-driven” approach essential for understanding cancer biology and mechanisms of tumor development. Yet, despite the completion of thousands of studies on cancer gene expression, there have been few attempts to normalize and integrate co-expression data from scattered sources in a concise “meta-analysis” framework. We generated such a resource by exploring gene coexpression networks in 82 microarray datasets from 9 major human cancer types. The analysis was conducted using an elaborate weighted gene coexpression network (WGCNA) methodology and identified over 3,000 robust gene coexpression modules. The modules covered a range of known tumor features, such as proliferation, extracellular matrix remodeling, hypoxia, inflammation, angiogenesis, tumor differentiation programs, specific signaling pathways, genomic alterations, and biomarkers of individual tumor subtypes. To prioritize genes with respect to those tumor features, we ranked genes within each module by connectivity, leading to identification of module-specific functionally prominent hub genes. To showcase the utility of this network information, we positioned known cancer drug targets within the coexpression networks and predicted that Anakinra, an anti-rheumatoid therapeutic agent, may be promising for development in colorectal cancer. We offer a comprehensive, normalized and well documented collection of >3000 gene coexpression modules in a variety of cancers as a rich data resource to facilitate further progress in cancer research.  相似文献   

9.
刘杰  李勃  陈晓洁  陈斌 《昆虫学报》1950,63(10):1171-1182
【目的】利用权重基因共表达网络分析(weighted gene co-expression network analysis,WGCNA)探索埃及伊蚊Aedes aegypti不同组织基因共表达模式。【方法】从NCBI SRA数据库中选择埃及伊蚊不同组织的转录组数据中具代表性的9种组织(雌雄成蚊的触角和脑,雌蚊的喙、下颚须和卵巢,雄成蚊的前足、中足、后足和腹部末端)的双端测序数据;经过缺失值移除以及方差计算后,筛选出方差最大的5 000个基因,利用R软件中WGCNA包建立埃及伊蚊成蚊不同组织的基因共表达网络并划分模块;然后利用clusterProfiler包对组织特异性模块内的基因进行GO(Gene Ontology)和KEGG(Kyoto Encyclopediaof Genes and Genomes)富集分析,并用Cytoscape软件中的CytoHubba插件筛选共表达模块内的hub基因。【结果】从埃及伊蚊成蚊不同组织中共鉴定出11个基因共表达模块,在雌蚊触角、喙、卵巢、下颚须以及雄蚊脑、腹部末端组织中各鉴定出1个特异性表达模块,雄蚊前足、中足和后足组织中无特异性表达模块。6个组织特异性表达模块内基因功能注释到组织生物学功能;其中,雌蚊触角特异性green模块内基因具有气味结合和嗅觉受体活性等功能;雌蚊喙特异性purple模块内基因具有丝氨酸型肽链内切酶活性和丝氨酸水解酶活性等功能;雄蚊脑特异性blue模块内基因在生物学过程调节、信号转导和神经系统过程等生物学过程中发挥主要作用。利用CytoHubba进一步鉴定出所选组织特异性共表达模块中具有高连通性的hub基因,包括AAEL010426, AAEL002896, AAEL002600, AAEL000961, AAEL007784和AAEL006429。【结论】本研究依据埃及伊蚊不同组织转录组数据,利用WGCNA方法发现了许多重要的基因共表达模块。本研究的结果为蚊虫基因共表达模式分析提供新思路和方法基础,对探究蚊虫不同组织特有的基因资源信息以及功能基因生物信息学研究有参考价值。  相似文献   

10.
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease with multiple molecular mechanisms. To investigate and contrast the molecular processes differing between bronchiolitis and emphysema phenotypes of COPD, we downloaded the GSE69818 microarray data set from the Gene Expression Omnibus (GEO), which based on lung tissues from 38 patients with emphysema and 32 patients with bronchiolitis. Then, weighted gene coexpression network analysis (WGCNA) and differential coexpression (DiffCoEx) analysis were performed, followed by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment analysis (KEGG) analysis. Modules and hub genes for bronchiolitis and emphysema were identified, and we found that genes in modules linked to neutrophil degranulation, Rho protein signal transduction and B cell receptor signalling were coexpressed in emphysema. DiffCoEx analysis showed that four hub genes (IFT88, CCDC103, MMP10 and Bik) were consistently expressed in emphysema patients; these hub genes were enriched, respectively, for functions of cilium assembly and movement, proteolysis and apoptotic mitochondrial changes. In our re‐analysis of GSE69818, gene expression networks in relation to emphysema deepen insights into the molecular mechanism of COPD and also identify some promising therapeutic targets.  相似文献   

11.
Spinal cord injury (SCI) is characterized by dramatic neurons loss and axonal regeneration suppression. The underlying mechanism associated with SCI-induced immune suppression is still unclear. Weighted gene coexpression network analysis (WGCNA) is now widely applied for the identification of the coexpressed modules, hub genes, and pathways associated with clinic traits of diseases. We performed this study to identify hub genes associated with SCI development. Gene Expression Omnibus (GEO) data sets GSE45006 and GSE20907 were downloaded and the significant correlativity and connectivity between them were detected using WGCNA. Three significant consensus modules, including 567 eigengenes, were identified from the master GSE45006 data following the preconditions of approximate scale-free topology for WGCNA. Further bioinformatics analysis showed these eigengenes were involved in inflammatory and immune responses in SCI. Three hub genes Rac2, Itgb2, and Tyrobp and one pathway “natural killer cell-mediated cytotoxicity” were identified following short time-series expression miner, protein-protein interaction network, and functional enrichment analysis. Gradually upregulated expression patterns of Rac2, Itgb2, and Tyrobp genes at 0, 3, 7, and 14 days after SCI were confirmed based on GSE45006 and GSE20907 data set. Finally, we found that Rac2, Itgb2, and Tyrobp genes might take crucial roles in SCI development through the “natural killer cell–mediated cytotoxicity” pathway.  相似文献   

12.
13.
14.
Cervical cancer is the fourth most common malignancy in women worldwide and cervical squamous cell carcinoma (CESC) is the most common histological type of cervical cancer. The dysregulation of genes plays a significant role in cancer. In the present study, we screened out differentially expressed genes (DEGs) of CESC in the GSE63514 data set from the Gene Expression Omnibus database. An integrated bioinformatics analysis was used to select hub genes, as well as to investigate their related prognostic signature, functional annotation, methylation mechanism, and candidate molecular drugs. As a result, a total of 1907 DEGs were identified (944 were upregulated and 963 were downregulated). In the protein–protein interaction network, three hub modules and 30 hub genes were identified. And two hub modules and 116 hub genes were screened out from four CESC-related modules by the weighted gene coexpression network analysis. The gene ontology term enrichment analysis and Kyoto encyclopedia of genes and genomes pathway analysis were performed to better understand functions and pathways. Genes with a significant prognostic value were found by prognostic signature analysis. And there were five genes (EPHX2, CHAF1B, KIAA1524, CDC45, and RMI2) identified as significant CESC-associated genes after expression validation and survival analysis. Among them, EPHX2 and RMI2 were noted as two novel key genes for the CESC-associated methylation and expression. In addition, four candidate small molecule drugs for CESC (camptothecin, resveratrol, vorinostat, and trichostatin A) were defined. Further studies are required to explore these significant CESC-associated genes for their potentiality in diagnosis, prognosis, and targeted therapy.  相似文献   

15.
Nonobstructive azoospermia (NOA) or testicular failure is the most severe form of male infertility. A variety of conditions, both acquired and congenital, can cause azoospermia. However, in a large number of azoospermia patients who are classified as idiopathic cases, the etiology remains poorly understand mainly due to the lack of knowledge of all the genetic causes and molecular mechanisms responsible for spermatogenesis failure. Identification of the key gene modules and pathways-related spermatogenesis failure might help to reveal the mechanisms of idiopathic azoospermia. Therefore, the expression patterns of spermatogenesis-associated genes in NOA were analyzed by weighted gene coexpression network analysis (WGCNA) based on two public microarray data sets (GSE45885 and GSE45887), which included 51 samples and 32,321 genes. We identified a module (turquoise) that was significantly related to the Johnsen score of the testicular samples. In addition, the results of function and pathway enrichment analyses based on the online bioinformatics database Metascape revealed that genes in the turquoise module were mainly related to the process of spermatogenesis and spermatid development. To further identify spermatogenesis-associated genes, a microarray data set (GSE926) of murine testis at different developmental time points was analyzed by WGCNA. The blue module in GSE926 was significantly related to the time of murine testis development. The overlap study and k-core analysis based on protein–protein interaction network revealed that spermatogenesis- and spermatid development–associated genes, including glyceraldehyde-3-phosphate dehydrogenase, ADAM metallopeptidase domain 2, transition protein 1, testis-specific serine kinase 2, transition protein 2, and germ cell-associated 1 (GSG1), were further identified in the selected modules. The expression profile of GSG1 in human testis was chosen for further study using immunochemistry staining. Taken together, these screened gene modules and pathways provided a more detailed genetic and molecular mechanism underlying spermatogenesis failure occurrence and holds promise as potential diagnosis biomarkers and therapeutic targets.  相似文献   

16.
Glioma causes great harm to people worldwide. Systemic coexpression analysis of this disease could be beneficial for the identification and development of new prognostic and predictive markers in the clinical management of glioma. In this study, we extracted data sets from the Gene Expression Omnibus data set by using “glioma” as the keyword. Then, a coexpression module was constructed with the help of Weighted Gene Coexpression Network Analysis software. Besides, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on the genes in these modules. As a result, the critical modules and target genes were identified. Eight coexpression modules were constructed using the 4,000 genes with a high expression value of the total 141 glioma samples. The result of the analysis of the interaction among these modules showed that there was a high scale independence degree among them. The GO and KEGG enrichment analyses showed that there was a significant difference in the enriched terms and degree among these eight modules, and module 5 was identified as the most important module. Besides, the pathways it was enriched in, hsa04510: Focal adhesion and hsa04610: Complement and coagulation cascades, were determined as the most important pathways. In summary, module 5 and the pathways it was enriched in, hsa04510: Focal adhesion and has 04610: Complement and coagulation cascades, have the potential to serve as biomarkers for patients with glioma.  相似文献   

17.
18.
榕小蜂的雌雄个体之间存在很大表型差异,以至于很难将雌雄个体彼此联系在一起.以对叶榕传粉榕小蜂作为材料,利用"加权基因共表达网络分析"软件(WGCNA),对榕小蜂的基因组和转录组进行分析,结果发现,5个基因共表达模块,分别用蓝色、蓝绿色、棕色、绿色和黄色标识,其中2个模块偏爱在雌蜂中表达,3个模块偏爱在蛹中表达.基因本体(GO)分析发现在蓝绿色和黄色表达模块中发现3个功能富集的基因集合.在蓝绿色基因表达模块中发现2个基因集合,分别与细胞周期和核苷酸结合活性有关;在黄色基因表达模块中发现1个基因结合,与细胞分化有关,尤其是与神经发育有关.  相似文献   

19.
20.
Lung adenocarcinomas injured greatly on the people worldwide. Although clinic experiments and gene profiling analyses had been well performed, to our knowledge, systemic coexpression analysis of human genes for this cancer is still limited to date. Here, using the published data GSE75037, we built the coexpression modules of genes by Weighted Gene Co-Expression Network Analysis (WGCNA), and investigated function and protein–protein interaction network of coexpression genes by Database for Annotation, visualization, and Integrated Discovery (DAVID) and String database, respectively. First, 11 coexpression modules were conducted for 5,000 genes in the 83 samples recently. Number of genes for each module ranged from 90 to 1,260, with the mean of 454. Second, interaction relationships of hub-genes between pairwise modules showed great differences, suggesting relatively high scale independence of the modules. Third, functional enrichment of the coexpression modules showed great differences. We found that genes in modules 8 significantly enriched in the biological process and/or pathways of cell adhesion, extracellular matrix (ECM)–receptor interaction, focal adhesion, and PI3K-Akt signaling pathway, and so forth. It was inferred as the key module underlying lung adenocarcinomas. Furthermore, PPI analysis revealed that the genes COL1A1, COL1A2, COL3A1, CTGF, and BGN owned the largest number of adjacency genes, unveiling that they may functioned importantly during the occurrence of lung adenocarcinomas. To summary, genes involved in cell adhesion, ECM–receptor interaction, focal adhesion, and PI3K-Akt signaling pathway play crucial roles in human lung adenocarcinomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号