首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Histone deacetylases (HDACs) deacetylate histones and non-histone proteins, thereby affecting protein activity and gene expression. The regulation and function of the cytoplasmic class IIb HDAC6 in endothelial cells (ECs) is largely unexplored. Here, we demonstrate that HDAC6 is upregulated by hypoxia and is essential for angiogenesis. Silencing of HDAC6 in ECs decreases sprouting and migration in vitro and formation of functional vascular networks in matrigel plugs in vivo. HDAC6 regulates zebrafish vessel formation, and HDAC6-deficient mice showed a reduced formation of perfused vessels in matrigel plugs. Consistently, overexpression of wild-type HDAC6 increases sprouting from spheroids. HDAC6 function requires the catalytic activity but is independent of ubiquitin binding and deacetylation of α-tubulin. Instead, we found that HDAC6 interacts with and deacetylates the actin-remodelling protein cortactin in ECs, which is essential for zebrafish vessel formation and which mediates the angiogenic effect of HDAC6. In summary, we show that HDAC6 is necessary for angiogenesis in vivo and in vitro, involving the interaction and deacetylation of cortactin that regulates EC migration and sprouting.  相似文献   

2.
Endothelial‐mesenchymal transition (EndMT) plays a pivotal role in organ fibrosis. This study examined the effect of SIRT1 on transforming growth factor beta (TGF‐β)‐induced EndMT in human endothelial cells (ECs) and its probable molecular mechanism. We assessed EndMT by immunofluorescence staining, quantitative real‐time polymerase chain reaction, Western blotting, and migration and invasion assays. Adenovirus was used to overexpress or knockdown SIRT1 in ECs. The regulatory relationship between SIRT1 and Smad4 was analyzed by coimmunoprecipitation assay. We found that SIRT1 was decreased in TGF‐β‐induced EndMT, and SIRT1 inhibited TGF‐β‐induced EndMT through deacetylating Smad4. Our findings suggest that SIRT1 has an important role in inhibiting EndMT by regulating the TGF‐β/Smad4 pathway in human ECs and, thus, protecting against fibrosis.  相似文献   

3.
4.
Lung cancer is the leading cause of cancer-related death worldwide. Hypoxia is known to increase cancer cell migration and invasion. We have previously reported that hypoxia induces epithelial–mesenchymal transition (EMT) in lung cancer cells. However, it is unknown whether hypoxia promotes lung cancer cell migration and invasion via EMT and whether cyclic AMP (cAMP) dependent protein kinase (PKA) plays a role in this process. We found that hypoxia increased PKA activity and induced mRNA and protein expression of PKA catalytic subunit α (PKACA), and regulatory subunits R1A and R1B. Knockdown of HIF-1/2α prevented hypoxia-mediated induction of PKACA mRNA expression and PKA activity. Inhibition of PKA activity with chemical inhibitors prevented EMT induced by hypoxia and tumor growth factor β1. However, activation of PKA by forskolin and 8-Br-cAMP did not induce EMT. Furthermore, treatment with H89 and knockdown of PKACA prevented hypoxia-mediated, EMT, cell migration, and invasion, whereas overexpression of mouse PKACA rescued hypoxia-mediated migration and invasion in PKACA deficient cancer cells. Our results suggest that hypoxia enhances PKA activity by upregulating PKA gene expression in a HIF dependent mechanism and that PKA plays a key role in hypoxia-mediated EMT, migration, and invasion in lung cancer cells.  相似文献   

5.
6.
LOXL2(lysyl oxidase like 2)是赖氨酰氧化酶(LOX)家族的一个重要成员,不仅可促进细胞外基质中胶原蛋白和弹性蛋白的交联,而且在转录调控、细胞信号转导以及细胞粘附等生物学过程中也有重要作用。多篇研究表明,LOXL2在多种肿瘤中高表达,且与多种肿瘤细胞的增殖迁移等生物学行为密切相关。LOXL2的表达调控机制目前仍不清楚。为了进一步研究LOXL2的转录调控机制,本研究克隆鉴定了LOXL2的启动子。首先通过数据库对LOXL2基因结构及潜在启动子区域进行了分析,进而以人的基因组DNA为模板,通过PCR定向克隆策略,构建了5个长度不同并覆盖LOXL2基因转录起始位点附近约1.7 kb的LOXL2基因启动子荧光素酶报告基因重组体。启动子活性分析结果表明,与对照组相比,5个重组体均具有启动子活性(P<0.05),提示LOXL2基因核心启动子定位于转录起始位点附近约185 bp的区域内。转录因子结合位点分析结果表明,LOXL2基因启动子缺乏典型的TATA盒,但含有GC盒以及Sp1、NFkB等潜在的转录因子结合位点。外源转染Sp1表达质粒能显著增强LOXL2基因启动子的活性(P<0.05),提示Sp1能直接激活LOXL2的转录。  相似文献   

7.
Tumor necrosis factor-α (TNF-α) plays an important role in pathological angiogenesis associated with inflammatory response. Pim-3 kinase belonging to serine/threonine protein kinases is a potent suppressor of myc-induced apoptosis. We have recently demonstrated that Pim-3 plays an essential role in endothelial cell (EC) spreading and migration. In this study, we showed that TNF-α transiently increased Pim-3 mRNA expression, and this was mediated through Tumor necrosis factor-α receptor-1 (TNFR1) pathway in ECs. TNF-α could promote stabilization of Pim- 3 mRNA in ECs. Small-interfering RNA (siRNA)-mediated gene knockdown of Pim-3 significantly impaired TNF-α-induced formation of EC membrane protrusions in vitro. Furthermore, Pim-3 silencing inhibited EC sprouting in subcutaneous Matrigel in vivo. eNOS mRNA abundance was lower in Pim-3 siRNA transfected ECs compared with the control ECs. These observations suggest that Pim-3 plays a role in TNF-α-induced angiogenesis.  相似文献   

8.
9.
The epithelial-mesenchymal transition (EMT) is a key step for cancer cell migration, invasion, and metastasis. Transforming growth factor-β (TGF-β) regulates the EMT and the metastasis suppressor gene, N-myc downstream-regulated gene-1 (NDRG1), could play a role in regulating the TGF-β pathway. NDRG1 expression is markedly increased after chelator-mediated iron depletion via hypoxia-inducible factor 1α-dependent and independent pathways (Le, N. T. and Richardson, D. R. (2004) Blood 104, 2967-2975). Moreover, novel iron chelators show marked and selective anti-tumor activity and are a potential new class of anti-metabolites. Considering this, the current study investigated the relationship between NDRG1 and the EMT to examine if iron chelators can inhibit the EMT via NDRG1 up-regulation. We demonstrated that TGF-β induces the EMT in HT29 and DU145 cells. Further, the chelators, desferrioxamine (DFO) and di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), inhibited the TGF-β-induced EMT by maintaining E-cadherin and β-catenin, at the cell membrane. We then established stable clones with NDRG1 overexpression and knock-down in HT29 and DU145 cells. These data showed that NDRG1 overexpression maintained membrane E-cadherin and β-catenin and inhibited TGF-β-stimulated cell migration and invasion. Conversely, NDRG1 knock-down caused morphological changes from an epithelial- to fibroblastic-like phenotype and also increased migration and invasion, demonstrating NDRG1 knockdown induced the EMT and enhanced TGF-β effects. We also investigated the mechanisms involved and showed the TGF-β/SMAD and Wnt pathways were implicated in NDRG1 regulation of E-cadherin and β-catenin expression and translocation. This study demonstrates that chelators inhibit the TGF-β-induced EMT via a process consistent with NDRG1 up-regulation and elucidates the mechanism of their activity.  相似文献   

10.
11.
12.
13.
14.
Tumor neovascularization is targeted by inhibition of vascular endothelial growth factor (VEGF) or the receptor to prevent tumor growth, but drug resistance to angiogenesis inhibition limits clinical efficacy. Inhibition of the phosphoinositide 3 kinase pathway intermediate, mammalian target of rapamycin (mTOR), also inhibits tumor growth and may prevent escape from VEGF receptor inhibitors. mTOR is assembled into two separate multi-molecular complexes, mTORC1 and mTORC2. The direct effect of mTORC2 inhibition on the endothelium and tumor angiogenesis is poorly defined. We used pharmacological inhibitors and RNA interference to determine the function of mTORC2 versus Akt1 and mTORC1 in human endothelial cells (EC). Angiogenic sprouting, EC migration, cytoskeleton re-organization, and signaling events regulating matrix adhesion were studied. Sustained inactivation of mTORC1 activity up-regulated mTORC2-dependent Akt1 activation. In turn, ECs exposed to mTORC1-inhibition were resistant to apoptosis and hyper-responsive to renal cell carcinoma (RCC)-stimulated angiogenesis after relief of the inhibition. Conversely, mTORC1/2 dual inhibition or selective mTORC2 inactivation inhibited angiogenesis in response to RCC cells and VEGF. mTORC2-inactivation decreased EC migration more than Akt1- or mTORC1-inactivation. Mechanistically, mTORC2 inactivation robustly suppressed VEGF-stimulated EC actin polymerization, and inhibited focal adhesion formation and activation of focal adhesion kinase, independent of Akt1. Endothelial mTORC2 regulates angiogenesis, in part by regulation of EC focal adhesion kinase activity, matrix adhesion, and cytoskeletal remodeling, independent of Akt/mTORC1.  相似文献   

15.
Zhu J  Pan X  Zhang Z  Gao J  Zhang L  Chen J 《Cellular signalling》2012,24(6):1323-1332
Integrin-linked kinase (ILK) is a multifunctional serine/threonine kinase in cytoplasm. Recent studies showed that cancer patients with increased ILK expression had low survival, poor prognosis and increased metastasis. Although the causes of ILK overexpression remain to be fully elucidated, accumulating evidence suggests that its oncogenic capacity derives from its regulation of several downstream targets that provide cells with signals that promote proliferation, survival and migration. However, the mechanisms underlying tumor metastasis by ILK is still not fully understood. Epithelial–mesenchymal transition (EMT) is a critical event of cancer cells that triggers invasion and metastasis. We recently reported that knockdown of ILK inhibited the growth and induced apoptosis in human bladder cancer cells. Therefore, we postulate that ILK might involve in EMT. Here we further investigate the function of ILK with RNA interference in bladder cancer cells. Knockdown of ILK impeded an EMT with low Vimentin, Snail, Slug and Twist as well as high E-cadherin expression in vivo and vitro. In addition, we found that knockdown of ILK inhibited cell proliferation, migration and invasion as well as changed cell morphology, adhesion and rearranged cytoskeleton in vitro. We also demonstrated that ILK siRNA inhibited phosphorylation of downstream signaling targets Akt and GSK3β, increased expression of nm23-H1, as well as reduced expression of MMP-2 and MMP-9 in vivo and vitro. Furthermore, downregulation of ILK could increase expression of Ribonuclease inhibitor (RI), an important acidic cytoplasmic protein with many functions. Finally, the effects of ILK siRNA on bladder cancer cell phenotype and invasiveness translate into suppression for tumorigenesis and metastasis in vivo. Taken together, our findings highlight that ILK signaling pathway plays a novel role in the development of bladder cancer through regulating EMT. ILK could be a promising diagnostic marker and therapeutic target for bladder cancer.  相似文献   

16.
17.
内皮-间质转化(endothelial-to-mesenchymal transition,End MT)属于上皮-间质转化(epithelial-to-mesenchymal transition,EMT)的特殊类型,是内皮细胞在多种刺激因素作用下向间充质细胞转化的过程,在此过程中内皮细胞逐渐失去其形态和功能,获得增殖、迁移和合成胶原等间充质细胞表型特点.近来研究发现,内皮-间质转化在内皮功能调节,心肌、血管及瓣膜的发育和结构重塑等方面发挥着关键的作用,提示其在心血管疾病领域具有重要的研究意义.本文对内皮-间质转化的特点、功能、调节机制以及在心血管系统发育、心肌纤维化、肺动脉高压和动脉粥样硬化性血管重构等心血管疾病中的作用做一综述,以期为心血管疾病的防治提供新靶点.  相似文献   

18.
19.
20.
We investigated the role of profilin 2 in the stemness, migration, and invasion of HT29 cancer stem cells (CSCs). Increased and decreased levels of profilin 2 significantly enhanced and suppressed the self-renewal, migration, and invasion ability of HT29 CSCs, respectively. Moreover, profilin 2 directly regulated the expression of stemness markers (CD133, SOX2, and β-catenin) and epithelial mesenchymal transition (EMT) markers (E-cadherin and snail). CD133 and β-catenin were up-regulated by overexpression of profilin 2 and down-regulated by depletion of profilin 2. SOX2 was decreased by profilin 2 depletion. E-cadherin was not influenced by profilin 2- overexpression but increased by profilin 2- knockdown. The expression of snail was suppressed by profilin 2- knockdown. We speculated that stemness and the EMT are closely linked through profilin 2-related pathways. Therefore, this study indicates that profilin 2 affects the metastatic potential and stemness of colorectal CSCs by regulating EMT- and stemness-related proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号