共查询到20条相似文献,搜索用时 0 毫秒
1.
Abdelaziz DH Gavrilin MA Akhter A Caution K Kotrange S Khweek AA Abdulrahman BA Grandhi J Hassan ZA Marsh C Wewers MD Amer AO 《The Journal of biological chemistry》2011,286(5):3203-3208
The ability of Legionella pneumophila to cause pneumonia is determined by its capability to evade the immune system and grow within human monocytes and their derived macrophages. Human monocytes efficiently activate caspase-1 in response to Salmonella but not to L. pneumophila. The molecular mechanism for the lack of inflammasome activation during L. pneumophila infection is unknown. Evaluation of the expression of several inflammasome components in human monocytes during L. pneumophila infection revealed that the expression of the apoptosis-associated speck-like protein (ASC) and the NOD-like receptor NLRC4 are significantly down-regulated in human monocytes. Exogenous expression of ASC maintained the protein level constant during L. pneumophila infection and conveyed caspase-1 activation and restricted the growth of the pathogen. Further depletion of ASC with siRNA was accompanied with improved NF-κB activation and enhanced L. pneumophila growth. Therefore, our data demonstrate that L. pneumophila manipulates ASC levels to evade inflammasome activation and grow in human monocytes. By targeting ASC, L. pneumophila modulates the inflammasome, the apoptosome, and NF-κB pathway simultaneously. 相似文献
2.
Apoptosis-associated speck-like protein containing a caspase recruitment domain is a regulator of procaspase-1 activation 总被引:10,自引:0,他引:10
Stehlik C Lee SH Dorfleutner A Stassinopoulos A Sagara J Reed JC 《Journal of immunology (Baltimore, Md. : 1950)》2003,171(11):6154-6163
Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)/target of methylation-induced silencing/PYCARD represents one of only two proteins encoded in the human genome that contains a caspase recruitment domain (CARD) together with a pyrin, AIM, ASC, and death domain-like (PAAD)/PYRIN/DAPIN domain. CARDs regulate caspase family proteases. We show here that ASC binds by its CARD to procaspase-1 and to adapter proteins involved in caspase-1 activation, thereby regulating cytokine pro-IL-1beta activation by this protease in THP-1 monocytes. ASC enhances IL-1beta secretion into the cell culture supernatants, at low concentrations, while suppressing at high concentrations. When expressed in HEK293 cells, ASC interferes with Cardiak/Rip2/Rick-mediated oligomerization of procaspase-1 and suppresses activation this protease, as measured by protease activity assays. Moreover, ASC also recruits procaspase-1 into ASC-formed cytosolic specks, separating it from Cardiak. We also show that expression of the PAAD/PYRIN family proteins pyrin or cryopyrin/PYPAF1/NALP3 individually inhibits IL-1beta secretion but that coexpression of ASC with these proteins results in enhanced IL-1beta secretion. However, expression of ASC uniformly interferes with caspase-1 activation and IL-1beta secretion induced by proinflammatory stimuli such as LPS and TNF, suggesting pathway competition. Moreover, LPS and TNF induce increases in ASC mRNA and protein expression in cells of myeloid/monocytic origin, revealing another level of cross-talk of cytokine-signaling pathways with the ASC-controlled pathway. Thus, our results suggest a complex interplay of the bipartite adapter protein ASC with PAAD/PYRIN family proteins, LPS (Toll family receptors), and TNF in the regulation of procaspase-1 activation, cytokine production, and control of inflammatory responses. 相似文献
3.
Eva de Alba 《Biomolecular NMR assignments》2007,1(1):135-137
The backbone and side chain resonance assignments of human ACS (∼22 KD), apoptosis-associated speck-like protein containing
a caspase recruitment domain and a pyrin domain, have been determined by triple-resonance NMR techniques. 相似文献
4.
Motani K Kushiyama H Imamura R Kinoshita T Nishiuchi T Suda T 《The Journal of biological chemistry》2011,286(39):33963-33972
The adaptor protein, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), connects pathogen/danger sensors such as NLRP3 and NLRC4 with caspases and is involved in inflammation and cell death. We have found that ASC activation induced caspase-8-dependent apoptosis or CA-074Me (cathepsin B inhibitor)-inhibitable necrosis depending on the cell type. Unlike necroptosis, another necrotic cell death, ASC-mediated necrosis, was neither RIP3-dependent nor necrostatin-1-inhibitable. Although acetyl-YVAD-chloromethylketone (Ac-YVAD-CMK) (caspase-1 inhibitor) did not inhibit ASC-mediated necrosis, comprehensive gene expression analyses indicated that caspase-1 expression coincided with the necrosis type. Furthermore, caspase-1 knockdown converted necrosis-type cells to apoptosis-type cells, whereas exogenous expression of either wild-type or catalytically inactive caspase-1 did the opposite. Knockdown of caspase-1, but not Ac-YVAD-CMK, suppressed the monocyte necrosis induced by Staphylococcus and Pseudomonas infection. Thus, the catalytic activity of caspase-1 is dispensable for necrosis induction. Intriguingly, a short period of caspase-1 knockdown inhibited IL-1β production but not necrosis, although longer knockdown suppressed both responses. Possible explanations of this phenomenon are discussed. 相似文献
5.
Shu Ma Dan-Dan Wang Cheng-Yuan Ma Yan-Dong Zhang 《Journal of cellular biochemistry》2019,120(9):15429-15442
Ankylosing spondylitis (AS) refers to a type of arthritis manifested with chronic inflammation of spine joints. microRNAs (MiRNAs) have been identified as new therapeutic targets for inflammatory diseases. In this study, we evaluated the influence of microRNA-96 (miR-96) on osteoblast differentiation together with bone formation in a murine model of AS. The speculated relationship that miR-96 could bind to sclerostin (SOST) was verified by dual luciferase reporter assay. After successful model establishment, the mice with AS and osteoblasts isolated from mice with AS were treated with mimics or inhibitors of miR-96, or DKK-1 (a Wnt signaling inhibitor). The effects of gain- or loss-of-function of miR-96 on the inflammatory cytokine release (IL-6, IL-10, and TNF-α), alkaline phosphatase (ALP) activity, calcium nodule formation, along with the viability of osteoblasts were determined. It was observed that miR-96 might target and regulate SOST. Besides, miR-96 was expressed at a high level in AS mice while SOST expressed at a low level. TOP/FOP-Flash luciferase reporter assay confirmed that miR-96 activated the Wnt signaling pathway. Moreover, AS mice overexpressing miR-96 exhibited increased contents of IL-6, IL-10 and TNF-α, ALP activity, calcium nodule numbers, and viability of osteoblasts. In contrast, inhibition of miR-96 resulted in suppression of the osteoblast differentiation and bone formation. In conclusion, the study implicates that overexpressing miR-96 could improve osteoblast differentiation and bone formation in AS mice via Wnt signaling pathway activation, highlighting a potential new target for AS treatment. 相似文献
6.
Strohbach C Kleinman S Linkhart T Amaar Y Chen ST Mohan S Strong D 《Journal of cellular biochemistry》2008,104(5):1890-1905
Insulin-like growth factor binding protein (IGFBP)-6 has been reported to inhibit differentiation of myoblasts and osteoblasts. In the current study, we explored the mechanisms underlying IGFBP-6 effects on osteoblast differentiation. During MC3T3-E1 osteoblast differentiation, we found that IGFBP-6 protein was down-regulated. Overexpression of IGFBP-6 in MC3T3-E1 and human bone cells inhibited nodule formation, osteocalcin mRNA expression and ALP activity. Furthermore, accumulation of IGFBP-6 in the culture media was not required for any of these effects suggesting that IGFBP-6 suppressed osteoblast differentiation by an intracellular mechanism. A yeast two-hybrid screen of an osteosarcoma library was conducted to identify intracellular binding partners to account for IGFBP-6 inhibitory effects on osteoblast differentiation. LIM mineralizing protein (LMP-1) was identified as a high affinity IGFBP-6 binding partner. Physical interaction between IGFBP-6 and LMP-1 was confirmed by co-immunoprecipitation. Fluorescent protein fusion constructs for LMP-1 and IGFBP-6 were transiently transfected into osteoblasts to provide evidence of subcellular locations for each protein. Coexpression of LMP-1-GFP and IGFBP-6-RFP resulted in overlapping subcellular localization of LMP-1 and IGFBP-6. To determine if there was a functional association of IGFBP-6 and LMP-1 as well as a physical association, we studied the effect of IGFBP-6, LMP-1 and their combination on type I procollagen promoter activity. LMP-1 increased promoter activity while IGFBP-6 reduced promoter activity, and coexpression of LMP-1 with IGFBP-6 abrogated IGFBP-6 suppression. These studies provide evidence that overexpression of IGFBP-6 suppresses human and murine osteoblast differentiation, that IGFBP-6 and LMP-1 physically interact, and supports the conclusion that this interaction may be functionally relevant. 相似文献
7.
8.
9.
The oim mouse is a model of human Osteogenesis Imperfecta (OI) that has deficient synthesis of proalpha2(I) chains. Cells isolated from oim mice synthesize alpha1(I) collagen homotrimers that accumulate in tissues. To explore the feasibility of gene therapy for OI, a murine proalpha2(I) cDNA was inserted into an adenovirus vector and transferred into bone marrow stromal cells isolated from oim mice femurs. The murine cDNA under the control of the cytomegalovirus early promoter was expressed by the transduced cells. Analysis of the collagens synthesized by the transduced cells demonstrated that the cells synthesized stable type I collagen comprised of alpha1(I) and alpha2(I) heterotrimers in the correct ratio of 2:1. The collagen was efficiently secreted and also the cells retained the osteogenic potential as indicated by the expression of alkaline phosphatase activity when the transduced cells were treated with recombinant human bone morphogenetic protein 2. Injection of the virus carrying the murine proalpha2(I) cDNA into oim skin demonstrated synthesis of type I collagen comprised of alpha1 and alpha2 chains at the injection site. These preliminary data demonstrate that collagen genes can be transferred into bone marrow stromal cells as well as fibroblasts in vivo and that the genes are efficiently expressed. These data encourage further studies in gene replacement for some forms of OI and use of bone marrow stromal cells as vehicles to deliver therapeutic genes to bone. 相似文献
10.
John F. Bateman Lisa Sampurno Antonio Maurizi Shireen R. Lamand Natalie A. Sims Tegan L. Cheng Aaron Schindeler David G. Little 《Journal of cellular and molecular medicine》2019,23(3):1735-1745
Osteogenesis imperfecta (OI) is commonly caused by heterozygous type I collagen structural mutations that disturb triple helix folding and integrity. This mutant‐containing misfolded collagen accumulates in the endoplasmic reticulum (ER) and induces a form of ER stress associated with negative effects on osteoblast differentiation and maturation. Therapeutic induction of autophagy to degrade the mutant collagens could therefore be useful in ameliorating the ER stress and deleterious downstream consequences. To test this, we treated a mouse model of mild to moderate OI (α2(I) G610C) with dietary rapamycin from 3 to 8 weeks of age and effects on bone mass and mechanical properties were determined. OI bone mass and mechanics were, as previously reported, compromised compared to WT. While rapamycin treatment improved the trabecular parameters of WT and OI bones, the biomechanical deficits of OI bones were not rescued. Importantly, we show that rapamycin treatment suppressed the longitudinal and transverse growth of OI, but not WT, long bones. Our work demonstrates that dietary rapamycin offers no clinical benefit in this OI model and furthermore, the impact of rapamycin on OI bone growth could exacerbate the clinical consequences during periods of active bone growth in patients with OI caused by collagen misfolding mutations. 相似文献
11.
Xishuai Tong Roman R. Ganta Zongping Liu 《Biology of the cell / under the auspices of the European Cell Biology Organization》2020,112(9):251-264
Osteoclasts are multinucleated giant cells, responsible for bone resorption. Osteoclast differentiation and function requires a series of cytokines to remove the old bone, which coordinates with the induction of bone remodelling by osteoblast-mediated bone formation. Studies have demonstrated that AMP-activated protein kinase (AMPK) play a negative regulatory role in osteoclast differentiation and function. Research involving AMPK, a nutrient and energy sensor, has primarily focused on osteoclast differentiation and function; thus, its role in autophagy, inflammation and immunity remains poorly understood. Autophagy is a conservative homoeostatic mechanism of eukaryotic cells, and response to osteoclast differentiation and function; however, how it interacts with inflammation remains unclear. Additionally, based on the regulatory function of different AMPK subunits for osteoclast differentiation and function, its activation is regulated by upstream factors to perform bone metabolism. This review summarises the critical role of AMPK-mediated autophagy, inflammation and immunity by upstream and downstream signalling during receptor activator of nuclear factor kappa-B ligand-induced osteoclast differentiation and function. This pathway may provide therapeutic targets for bone-related diseases, as well as function as a biomarker for bone homoeostasis. 相似文献
12.
The tumor necrosis factor (TNF) superfamily member TNF-like weak inducer of apoptosis (TNFSF12, CD255) (TWEAK) can stimulate apoptosis in certain cancer cells. Previous studies suggest that TWEAK activates cell death indirectly, by inducing TNFα-mediated autocrine signals. However, the underlying death-signaling mechanism has not been directly defined. Consistent with earlier work, TWEAK assembled a proximal signaling complex containing its cognate receptor FN14, the adaptor TRAF2, and cellular inhibitor of apoptosis protein 1 (cIAP1). Neither the death domain adaptor Fas-associated death domain nor the apoptosis-initiating protease caspase-8 associated with this primary complex. Rather, TWEAK induced TNFα secretion and TNF receptor 1-dependent assembly of a death-signaling complex containing receptor-interacting protein 1 (RIP1), FADD, and caspase-8. Knockdown of RIP1 by siRNA prevented TWEAK-induced association of FADD with caspase-8 but not formation of the FN14-TRAF2-cIAP1 complex and inhibited apoptosis activation. Depletion of the RIP1 E3 ubiquitin ligase cIAP1 enhanced assembly of the RIP1-FADD-caspase-8 complex and augmented cell death. Conversely, knockdown of the RIP1 deubiquitinase CYLD inhibited these functions. Depletion of FADD, caspase-8, BID, or BAX and BAK but not RIP3 attenuated TWEAK-induced cell death. Pharmacologic inhibition of the NF-κB pathway or siRNA knockdown of RelA attenuated TWEAK induction of TNFα and association of RIP1 with FADD and caspase-8. These results suggest that TWEAK triggers apoptosis by promoting assembly of a RIP1-FADD-caspse-8 complex via autocrine TNFα-TNFR1 signaling. The proapoptotic activity of TWEAK is modulated by cIAP1 and CYLD and engages both the extrinsic and intrinsic signaling pathways. 相似文献
13.
Lee JR Hahn HS Kim YH Nguyen HH Yang JM Kang JS Hahn MJ 《Biochemical and biophysical research communications》2011,(1):206-211
The EGFR-mediated signaling pathway regulates multiple biological processes such as cell proliferation, survival and differentiation. Previously APPL1 (adaptor protein containing PH domain, PTB domain and leucine zipper 1) has been reported to function as a downstream effector of EGF-initiated signaling. Here we demonstrate that APPL1 regulates EGFR protein levels in response to EGF stimulation. Overexpression of APPL1 enhances EGFR stabilization while APPL1 depletion by siRNA reduces EGFR protein levels. APPL1 depletion accelerates EGFR internalization and movement of EGF/EGFR from cell surface to the perinuclear region in response to EGF treatment. Conversely, overexpression of APPL1 decelerates EGFR internalization and translocation of EGF/EGFR to the perinuclear region. Furthermore, APPL1 depletion enhances the activity of Rab5 which is involved in internalization and trafficking of EGFR and inhibition of Rab5 in APPL1-depleted cells restored EGFR levels. Consistently, APPL1 depletion reduced activation of Akt, the downstream signaling effector of EGFR and this is restored by inhibition of Rab5. These findings suggest that APPL1 is required for EGFR signaling by regulation of EGFR stabilities through inhibition of Rab5. 相似文献
14.
Kim E Lee Y Kim JS Song BS Kim SU Huh JW Lee SR Kim SH Hong Y Chang KT 《Molecules and cells》2010,29(5):443-448
V-set and immunoglobulin domain containing 1 (VSIG1) is a newly discovered member of the junctional adhesion molecule (JAM)
family; it is encoded by a gene located on human chromosome X and preferentially expressed in a variety of cancers in humans.
Little is known about its physiological function. To determine the role(s) of VSIG1 in mammalian spermatogenesis, we first
generated a specific antibody against mouse VSIG1 and examined the presence and localization of the protein in tissues. RTRCR
and Western blot analysis of the mouse tissues indicated that VSIG1 was specifically expressed in the testis. Furthermore,
the results of our trypsinization and biotinylation assays strongly support the assumption that VSIG1 is localized on the
testicular germ cell surface. In order to determine whether VSIG1 is capable of participation in homotypic interactions, we
performed a GST-pull down assay by using recombinant GST-fusion and Histagging proteins. The pull-down assay revealed that
each GST-fusion Ig-like domain shows homotypic binding. We further show that mVSIG1 can adhere to the Sertoli cells through
its first Ig-like domain. To identify the protein that interacted with cytoplasmic domain, we next performed co-immunoprecipitation
analysis. This analysis showed that ZO-1, which is the central structural protein of the tight junction, is the binding partner
of the cytoplasmic domain of mouse VSIG1. Our findings suggest that mouse VSIG1 interacts with Sertoli cells by heterophilic
adhesion via its first Ig-like domain. In addition, its cytoplasmic domain is critical for binding to ZO-1. 相似文献
15.
A regulatory cascade involving retinoic acid, Cbfa1, and matrix metalloproteinases is coupled to the development of a process of perichondrial invasion and osteogenic differentiation during bone formation 总被引:4,自引:0,他引:4 下载免费PDF全文
Maria J.G. Jimnez Milagros Balbín Jesús Alvarez Toshihisa Komori Paolo Bianco Kenn Holmbeck Henning Birkedal-Hansen Jos M. Lpez Carlos Lpez-Otín 《The Journal of cell biology》2001,155(7):1333-1344
16.
Y Shinoda K Fujita S Saito H Matsui Y Kanto Y Nagaura K Fukunaga S Tamura T Kobayashi 《FEBS letters》2012,586(19):3024-3029
The metal-dependent protein phosphatase family (PPM) governs a number of signaling pathways. PPM1L, originally identified as a negative regulator of stress-activated protein kinase signaling, was recently shown to be involved in the regulation of ceramide trafficking at ER-Golgi membrane contact sites. Here, we identified acyl-CoA binding domain containing 3 (ACBD3) as an interacting partner of PPM1L. We showed that this association, which recruits PPM1L to ER-Golgi membrane contact sites, is mediated by a GOLD (Golgi dynamics) domain in ACBD3. These results suggested that ACBD3 plays a pivotal role in ceramide transport regulation at the ER-Golgi interface.
Structured summary of protein interactions
ACBD3 and PPM1Lcolocalize by fluorescence microscopy (View interaction)FYCO1physically interacts with PPM1L by pull down (View interaction)SEC14L2physically interacts with PPM1L by pull down (View interaction)ACBD3physically interacts with PPM1L by pull down (View interaction)SEC14L1physically interacts with PPM1L by pull down (View interaction)PPM1Lphysically interacts with ACBD3 by two hybrid (View interaction) 相似文献17.
Xiao H Hapiak VM Smith KA Lin L Hobson RJ Plenefisch J Komuniecki R 《Developmental biology》2006,298(2):379-391
Serotonin (5-HT) stimulation of egg-laying in Caenorhabditis elegans is abolished in ser-1 (ok345) animals and is rescued by ser-1 expression in vulval muscle. A PDZ binding motif (ETFL) at the SER-1 C-terminus is not essential for rescue, but facilitates SER-1 signaling. SER-1 binds specifically to PDZ domain 10 of the multi-PDZ domain protein, MPZ-1, based on GST pulldown and co-immunoprecipitation. mpz-1 is expressed in about 60 neurons and body wall and vulval muscles. In neurons, GFP-tagged MPZ-1 is punctate and colocalizes with the synaptic marker, synaptobrevin. The expression patterns of ser-1 and mpz-1 overlap in 3 pairs of neurons and vulval muscle. In addition, MPZ-1 also interacts with other GPCRs with acidic amino acids in the -3 position of their PDZ binding motifs. mpz-1 RNAi reduces 5-HT stimulated egg-laying in wild type animals and in ser-1 mutants rescued by muscle expression of SER-1. In contrast, mpz-1 RNAi has no effect on 5-HT stimulated egg-laying in ser-1 mutants rescued by expression of a truncated SER-1 that lacks the C-terminal PDZ binding motif. The overexpression of MPZ-1 PDZ domain 10 also inhibits 5-HT stimulated egg-laying. These studies suggest that the SER-1/MPZ-1 interaction facilitates SER-1 mediated signaling. 相似文献
18.
19.
Martha Blank Narelle E. McGregor Lynn Rowley Louise H. W. Kung Blessing CrimeenIrwin Ingrid J. Poulton Emma C. Walker Jonathan H. Gooi Shireen R. Lamand Natalie A. Sims John F. Bateman 《Journal of cellular and molecular medicine》2022,26(14):4021
The inherited brittle bone disease osteogenesis imperfecta (OI) is commonly caused by COL1A1 and COL1A2 mutations that disrupt the collagen I triple helix. This causes intracellular endoplasmic reticulum (ER) retention of the misfolded collagen and can result in a pathological ER stress response. A therapeutic approach to reduce this toxic mutant load could be to stimulate mutant collagen degradation by manipulating autophagy and/or ER‐associated degradation. Since carbamazepine (CBZ) both stimulates autophagy of misfolded collagen X and improves skeletal pathology in a metaphyseal chondrodysplasia model, we tested the effect of CBZ on bone structure and strength in 3‐week‐old male OI Col1a2 +/p.G610C and control mice. Treatment for 3 or 6 weeks with CBZ, at the dose effective in metaphyseal chondrodysplasia, provided no therapeutic benefit to Col1a2 +/p.G610C mouse bone structure, strength or composition, measured by micro‐computed tomography, three point bending tests and Fourier‐transform infrared microspectroscopy. In control mice, however, CBZ treatment for 6 weeks impaired femur growth and led to lower femoral cortical and trabecular bone mass. These data, showing the negative impact of CBZ treatment on the developing mouse bones, raise important issues which must be considered in any human clinical applications of CBZ in growing individuals. 相似文献
20.
George Skalka Holly Hall Joanna Somers Martin Bushell Anne Willis 《Cell cycle (Georgetown, Tex.)》2019,18(9):963-975
Common hallmarks of cancer include the dysregulation of cell cycle progression and the acquisition of genome instability. In tumors, G1 cell cycle checkpoint induction is often lost. This increases the reliance on a functional G2/M checkpoint to prevent progression through mitosis with damaged DNA, avoiding the introduction of potentially aberrant genetic alterations. Treatment of tumors with ionizing radiation (IR) utilizes this dependence on the G2/M checkpoint. Therefore, identification of factors which regulate this process could yield important biomarkers for refining this widely used cancer therapy. Leucine zipper and ICAT domain containing (LZIC) downregulation has been associated with the development of IR-induced tumors. However, despite LZIC being highly conserved, it has no known molecular function. We demonstrate that LZIC knockout (KO) cell lines show a dysregulated G2/M cell cycle checkpoint following IR treatment. In addition, we show that LZIC deficient cells competently activate the G1 and early G2/M checkpoint but fail to maintain the late G2/M checkpoint after IR exposure. Specifically, this defect was found to occur downstream of PIKK signaling. The LZIC KO cells demonstrated severe aneuploidy indicative of genomic instability. In addition, analysis of data from cancer patient databases uncovered a strong correlation between LZIC expression and poor prognosis in several cancers. Our findings suggest that LZIC is functionally involved in cellular response to IR, and its expression level could serve as a biomarker for patient stratification in clinical cancer practice. 相似文献