首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Critical limb ischemia (CLI) is a syndrome manifested by ischemic rest pain, non-healing ulcers and tissue loss. CLI patients are at very high risk of amputation and experience poor physical function, leading to severe morbidity and mortality. The fundamental goal for CLI treatment is to relieve ischemic rest pain, heal ulcers, prevent limb loss and improve the quality of life, thereby extending the survival of the patient. Surgical or endovascular revascularization aimed at increasing blood flow is currently available for limb salvage in CLI. However, up to 30% of CLI patients are not suitable for such interventions because of high operative risk or unfavorable vascular anatomy. Therefore exploring new and more effective strategies for revascularization of ischemic limbs is imperative for the establishment of a viable therapeutic alternative. With the emergence of new approaches, this review describes up-to-date progress and developments in cell-based therapy as a novel and promising alternative for CLI treatment. Preliminary clinical data have established the safety, feasibility and efficacy of stem cells, and numerous studies are underway to consolidate this evidence further. However, significant hurdles remain to be addressed before this research can be responsibly translated to the bedside. In particular, we need better understanding of the behavior of cells post-transplantation and to learn how to control their survival and migration proliferation/differentiation in the hostile pathologic environment. Future research should focus on methods of isolation, optimal dosage, appropriate cell type, route of administration, role of tissue-derived factors and supportive endogenous stimulation.  相似文献   

2.
外周动脉疾病(PAD)与心血管疾病(CV)的发病率和死亡率有着密切的联系。ACCF/AHA指南建议无症状和症状性PAD患者戒烟并应用抗血小板/抗凝药物。对于存在严重肢体缺血(CLI)的PAD患者应考虑接受腔内与开放保肢手术治疗。即便存在CLI的PAD患者接受如上治疗,有时仍无法为患肢提供足够的血流灌注以消除症状。为建立有效血供,许多研究已经深入细胞治疗层面。内皮干细胞、单核细胞和骨髓间充质干细胞在临床应用中得到了很好的研究。血管内皮生长因子、成纤维细胞生长因子和肝细胞生长因子(HGF)也被应用于PAD患者,以诱导血管生成。其中,HGF最有优势,因为它可诱导血管生成却不伴有反应性血管炎及血管通透性增高。同时,血管腔内治疗器械及技术,如药物涂层球囊等也获得较快发展。本文将PAD治疗进展综述如下。  相似文献   

3.
Cardiovascular diseases are known as one of major causes of morbidity and mortality worldwide. Despite the many advancement in therapies are associated with cardiovascular diseases, it seems that finding of new therapeutic option is necessary. Cell therapy is one of attractive therapeutic platforms for treatment of a variety of diseases such as cardiovascular diseases. Among of various types of cell therapy, stem cell therapy has been emerged as an effective therapeutic approach in this area. Stem cells divided into multipotent stem cells and pluripotent stem cells. A large number studies indicated that utilization of each of them are associated with a variety of advantages and disadvantages. Multiple lines evidence indicated that stem cell therapy could be used as suitable therapeutic approach for treatment of cardiovascular diseases. Many clinical trials have been performed for assessing efficiency of stem cell therapies in human. However, stem cell therapy are associated with some challenges, but, it seems resolving of them could contribute to using of them as effective therapeutic approach for patients who suffering from cardiovascular diseases. In the current review, we summarized current therapeutic strategies based on stem cells for cardiovascular diseases. J. Cell. Biochem. 119: 95–104, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

4.
Damaged cartilage tissue has no functional replacement alternatives and current therapies for bone injury treatment are far from being the ideal solutions emphasizing an urgent need for alternative therapeutic approaches for osteochondral (OC) regeneration. The tissue engineering field provides new possibilities for therapeutics and regeneration in rheumatology and orthopaedics, holding the potential for improving the quality of life of millions of patients by exploring new strategies towards the development of biological substitutes to maintain, repair and improve OC tissue function. Numerous studies have focused on the development of distinct tissue engineering strategies that could result in promising solutions for this delicate interface. In order to outperform currently used methods, novel tissue engineering approaches propose, for example, the design of multi-layered scaffolds, the use of stem cells, bioreactors or the combination of clinical techniques.  相似文献   

5.
Diseases caused by ischemia are one of the leading causes of death in the world. Current therapies for treating acute myocardial infarction, ischemic stroke, and critical limb ischemia do not complete recovery. Regenerative therapies opens new therapeutic strategy in the treatment of ischemic disorders. Mesenchymal stem cells(MSCs) are the most promising option in the field of cell-based therapies, due to their secretory and immunomodulatory abilities, that contribute to ease inflammation and pr...  相似文献   

6.
Novel cell therapy is required to treat critical limb ischemia (CLI) as many current approaches require repeated aspiration of bone marrow cells (BMCs). The use of cultured BMCs can reduce the total number of injections required and were shown to induce therapeutic angiogenesis in a murine model of hind limb ischemia. Blood flow recovery was significantly improved in mice treated with granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent BMCs that secreted inflammatory cytokines. Angiogenesis, lymphangiogenesis, and blood flow recovery ratio were significantly higher in the GM-CSF-cultured F4/80+ macrophage (GM-Mø)-treated group compared with controls. Furthermore, Foxp3+ cell numbers and tissue IL-10 concentrations were significantly increased compared with controls. There was no significant difference in blood flow recovery between GM-Mø and M-CSF-cultured F4/80+ macrophages (M-Mø). Thus, GM-Mø were associated with improved blood flow in hind limb ischemia similar to M-Mø. The selective methods of culturing and treating GM-Mø cells similar to M-Mø cells could be used clinically to help resolve the large number of cells required for BMC treatment of CLI. This study demonstrates a novel cell therapy for CLI that can be used in conjunction with conventional therapy including percutaneous intervention and surgical bypass.  相似文献   

7.
Hepatocellular carcinoma (HCC), the most common type of liver cancer, is usually a latent and asymptomatic malignancy caused by different aetiologies, which is a result of various aberrant molecular heterogeneity and often diagnosed at advanced stages. The incidence and prevalence have significantly increased because of sedentary lifestyle, diabetes, chronic infection with hepatotropic viruses and exposure to aflatoxins. Due to advanced intra- or extrahepatic metastasis, recurrence is very common even after radical resection. In this paper, we highlighted novel therapeutic modalities, such as molecular-targeted therapies, targeted radionuclide therapies and epigenetic modification-based therapies. These topics are trending headlines and their combination with cell-based immunotherapies, and gene therapy has provided promising prospects for the future of HCC treatment. Moreover, a comprehensive overview of current and advanced therapeutic approaches is discussed and the advantages and limitations of each strategy are described. Finally, very recent and approved novel combined therapies and their promising results in HCC treatment have been introduced.  相似文献   

8.
The Gram-negative pathogen Helicobacter pylori is increasingly more resistant to the three major antibiotics (metronidazole, clarithromycin and amoxicillin) that are most commonly used to treat infection. As a result, there is an increased rate of treatment failure; this translates into an overall higher cost of treatment due to the need for increased length of treatment and/or the requirement for combination or sequential therapy. Given the rise in antibiotic resistance, the complicated treatment regime, and issues related to patient compliance that stem from the duration and complexity of treatment, there is clearly a pressing need for the development of novel therapeutic strategies to combat H. pylori infection. As such, researchers are actively investigating the utility of antimicrobial peptides, small molecule inhibitors and naturopathic therapies. Herein we review and discuss each of these novel approaches as a means to target this important gastric pathogen.  相似文献   

9.
New therapeutic approaches are urgently needed for serious diseases, including cancer, cardiovascular diseases, viral infections, and others. A recent direction in drug development is the utilization of nucleic acid-based therapeutic molecules, such as antisense oligonucleotides, ribozymes, short interfering RNA (siRNA), and microRNA (miRNA). miRNAs are endogenous, short, non-coding RNA molecules. Some viruses encode their own miRNAs, which play pivotal roles in viral replication and immune evasion strategies. Conversely, viruses that do not encode miRNAs may manipulate host cell miRNAs for the benefits of their replication. miRNAs have therefore become attractive tools for the study of viral pathogenesis. Lately, novel therapeutic strategies based on miRNA technology for the treatment of viral diseases have been progressing rapidly. Although this new generation of molecular therapy is promising, there are still several challenges to face, such as targeting delivery to specific tissues, avoiding off-target effects of miRNAs, reducing the toxicity of the drugs, and overcoming mutations and drug resistance. In this article, we review the current knowledge of the role and therapeutic potential of miRNAs in viral diseases, and discuss the limitations of these therapies, as well as strategies to overcome them to provide safe and effective clinical applications of these new therapeutics.  相似文献   

10.
The genitourinary tract can be affected by several pathologies which require repair or replacement to recover biological functions. Current therapeutic strategies are challenged by a growing shortage of adequate tissues. Therefore, new options must be considered for the treatment of patients, with the use of stem cells (SCs) being attractive. Two different strategies can be derived from stem cell use: Cell therapy and tissue therapy, mainly through tissue engineering. The recent advances using these approaches are described in this review, with a focus on stromal/mesenchymal cells found in adipose tissue. Indeed, the accessibility, high yield at harvest as well as anti-fibrotic, immunomodulatory and proangiogenic properties make adipose-derived stromal/SCs promising alternatives to the therapies currently offered to patients. Finally, an innovative technique allowing tissue reconstruction without exogenous material, the self-assembly approach, will be presented. Despite advances, more studies are needed to translate such approaches from the bench to clinics in urology. For the 21st century, cell and tissue therapies based on SCs are certainly the future of genitourinary regenerative medicine.  相似文献   

11.
Narrowing of arteries supplying blood to the limbs provokes critical hindlimb ischemia (CLI). Although CLI results in irreversible sequelae, such as amputation, few therapeutic options induce the formation of new functional blood vessels. Based on the proangiogenic potentials of stem cells, in this study, it was examined whether a combination of dental pulp stem cells (DPSCs) and human umbilical vein endothelial cells (HUVECs) could result in enhanced therapeutic effects of stem cells for CLI compared with those of DPSCs or HUVECs alone. The DPSCs+ HUVECs combination therapy resulted in significantly higher blood flow and lower ischemia damage than DPSCs or HUVECs alone. The improved therapeutic effects in the DPSCs+ HUVECs group were accompanied by a significantly higher number of microvessels in the ischemic tissue than in the other groups. In vitro proliferation and tube formation assay showed that VEGF in the conditioned media of DPSCs induced proliferation and vessel-like tube formation of HUVECs. Altogether, our results demonstrated that the combination of DPSCs and HUVECs had significantly better therapeutic effects on CLI via VEGF-mediated crosstalk. This combinational strategy could be used to develop novel clinical protocols for CLI proangiogenic regenerative treatments.  相似文献   

12.
Hepatocellular carcinoma (HCC) is the most common type of primary hepatic cancer and is among the major causes of mortality due to cancer. Due to the lack of efficient conventional therapeutic options for this cancer, particularly in advanced cases, novel treatments including immunotherapy have been considered. However, despite the encouraging clinical outcomes after implementing these innovative approaches, such as oncolytic viruses (OVs), adoptive cell therapies (ACT), immune checkpoint blockades (ICBs), and cancer vaccines, several factors have restricted their therapeutic effect. The main concern is the existence of an immunosuppressive tumor microenvironment (TME). Combination of different ICBs or ICBs plus tyrosine kinase inhibitors have shown promising results in overcoming these limiting factors to some extent. Combination of programmed cell death ligand-1 (PD-L1) antibody Atezolizumab and vascular endothelial growth factor (VEGF) antibody Bevacizumab has become the standard of care in the first-line therapy for untestable HCC, approved by regulatory agencies. This paper highlighted a wide overview of the direct and indirect immunotherapeutic strategies proposed for the treatment of HCC patients and the common challenges that have hindered their further clinical applications.  相似文献   

13.
Stem cell-based treatments have been extensively explored in the last few decades to develop therapeutic strategies aimed at providing effective alternatives for those human pathologies in which surgical or pharmacological therapies produce limited effects. Among stem cells of different sources, mesenchymal stem cells (MSCs) offer several advantages, such as the absence of ethical concerns, easy harvesting, low immunogenicity and reduced tumorigenesis risks. Other than a multipotent differentiation ability, MSCs can release extracellular vesicles conveying proteins, mRNA and microRNA. Thanks to these properties, new therapeutic approaches have been designed for the treatment of various pathologies, including ocular diseases. In this review, the use of different MSCs and different administration strategies are described for the treatment of diabetic retinopathy, glaucoma, and retinitis pigmentosa. In a large number of investigations, positive results have been obtained by in vitro experiments and by MSC administration in animal models. Most authors agree that beneficial effects are likely related to MSC paracrine activity. Based on these considerations, many clinical trials have already been carried out. Overall, although some adverse effects have been described, promising outcomes are reported. It can be assumed that in the near future, safer and more effective protocols will be developed for more numerous clinical applications to improve the quality of life of patients affected by eye diseases.  相似文献   

14.
Stem cell-based therapy is a promising approach for treating a variety of disorders, including acute brain insults and neurodegenerative diseases. Stem cells such as mesenchymal stem cells (MSCs) secrete extracellular vesicles (EVs), circular membrane fragments (30 nm−1 μm) that are shed from the cell surface, carrying several therapeutic molecules such as proteins and microRNAs. Because EV-based therapy is superior to cell therapy in terms of scalable production, biodistribution, and safety profiles, it can be used to treat brain diseases as an alternative to stem cell therapy. This review presents evidences evaluating the role of stem cell-derived EVs in stroke, traumatic brain injury, and degenerative brain diseases, such as Alzheimer’s disease and Parkinson’ disease. In addition, stem cell-derived EVs have better profiles in biocompatibility, immunogenicity, and safety than those of small chemical and macromolecules. The advantages and disadvantages of EVs compared with other strategies are discussed. Even though EVs obtained from native stem cells have potential in the treatment of brain diseases, the successful clinical application is limited by the short half-life, limited targeting, rapid clearance after application, and insufficient payload. We discuss the strategies to enhance the efficacy of EV therapeutics. Finally, EV therapies have yet to be approved by the regulatory authorities. Major issues are discussed together with relevant advances in the clinical application of EV therapeutics.  相似文献   

15.
Although cancer is still one of the most significant global challenges facing public health, the world still lacks complementary approaches that would significantly enhance the efficacy of standard anticancer therapies. One of the essential strategies during cancer treatment is following a healthy diet program. The ketogenic diet (KD) has recently emerged as a metabolic therapy in cancer treatment, targeting cancer cell metabolism rather than a conventional dietary approach. The ketogenic diet (KD), a high-fat and very-low-carbohydrate with adequate amounts of protein, has shown antitumor effects by reducing energy supplies to cells. This low energy supply inhibits tumor growth, explaining the ketogenic diet’s therapeutic mechanisms in cancer treatment. This review highlights the crucial mechanisms that explain the ketogenic diet’s potential antitumor effects, which probably produces an unfavorable metabolic environment for cancer cells and can be used as a promising adjuvant in cancer therapy. Studies discussed in this review provide a solid background for researchers and physicians to design new combination therapies based on KD and conventional therapies.  相似文献   

16.
The neuronal ceroid lipofuscinoses (NCL, Batten disease) are a group of inherited neurodegenerative diseases. Infantile neuronal ceroid lipofuscinosis (INCL, infantile Batten disease, or infantile CLN1 disease) is caused by a deficiency in the soluble lysosomal enzyme palmitoyl protein thioesterase-1 (PPT1) and has the earliest onset and fastest progression of all the NCLs. Several therapeutic strategies including enzyme replacement, gene therapy, stem cell-mediated therapy, and small molecule drugs have resulted in minimal to modest improvements in the murine model of PPT1-deficiency. However, more recent studies using various combinations of these approaches have shown more promising results; in some instances more than doubling the lifespan of PPT1-deficient mice. These combination therapies that target different pathogenic mechanisms may offer the hope of treating this profoundly neurodegenerative disorder. Similar approaches may be useful when treating other forms of NCL caused by deficiencies in soluble lysosomal proteins. Different therapeutic targets will need to be identified and novel strategies developed in order to effectively treat forms of NCL caused by deficiencies in integral membrane proteins such as juvenile neuronal ceroid lipofuscinosis. Finally, the challenge with all of the NCLs will lie in early diagnosis, improving the efficacy of the treatments, and effectively translating them into the clinic. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.  相似文献   

17.
Reconstructive transplantation represents a bona fide option for select patients with devastating tissue loss, which could better restore the appearance, anatomy, and function than any other conventional treatment currently available. Despite favorable outcomes, broad clinical application of reconstructive transplantation is limited by the potential side effects of chronic multidrug immunosuppression. Thus, any reconstructive measures to improve these non‐life‐threatening conditions must address a delicate balance of risks and benefits. Today, several exciting novel therapeutic strategies, such as the implementation of cellular therapies including bone marrow or stem cells that integrate the concepts of immune regulation with those of nerve regeneration, are on the horizon. The development of reliable and reproducible small andlarge animal models is essential for the study of the unique immunological and biological aspects of vascularized composite allografts and to translate such novel immunoregulatory and tolerance‐inducing strategies and therapeutic concepts from the bench to bedside. This review provides an overview of the multitude of small and largeanimal models that have been particularly designed for basicand translational research related to reconstructive transplantation. (Part C) 96:39–50, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Liver cancer is the sixth most common cancer worldwide and 3rd most common cause of cancer-related death. Hepatocellular carcinoma (HCC) represents more than 90% of primary liver cancer and is a major public health problem. Due to the advanced stages of HCC at the time of diagnosis, utilizing the conventional treatment for solid tumors frequently ends with treatment failure, recurrence, or poor survival. HCC is highly refractory to chemotherapy and other systemic treatments, and locoregional therapies or selective internal radiation therapies are largely palliative. Considering how the pathogenesis of HCC often induces an immunosuppressed state which is further amplified by post-treatment recurrence and reactivation, immunostimulation provides a potential novel approach for the treatment of HCC. Immune response(s) of the body may be potentiated by immunomodulation of various effector cells such as B-cells, T-cells, Treg cells, natural killer cells, dendritic cells, cytotoxic T-lymphocytes, and other antigen-presenting cells; cellular components such as genes and microRNA; and molecules such as proteins, proteoglycans, surface receptors, chemokines, and cytokines. Targeting these effectors individually has helped in the development of newer therapeutic approaches; however, combinational therapies targeting multi-faceted biomarkers have yielded better results. Still, there is a need for further research to develop novel therapeutic strategies which may act as either complementary or an alternative treatment to the standard therapy protocols of HCC. This review focuses on potential cellular and molecular targets, as well as the role of virotherapy and combinational therapy in the treatment of HCC.  相似文献   

19.
Gene therapy strategies for colon cancer   总被引:4,自引:0,他引:4  
Colorectal cancer is the second most common cause of cancer mortality in Western countries. Gene therapy represents a novel approach to the treatment of colorectal cancer, and this review addresses the current strategies and ongoing clinical trials, including gene correction, immunomodulatory approaches and virus-directed enzyme-prodrug systems. Although the pre-clinical results for these strategies have been encouraging, clinical trials have not yet reflected these data. However, gene therapy for colorectal cancer is still in the early stages of development, and its potential, particularly in combination with conventional cancer therapies, warrants further investigation.  相似文献   

20.
Glioblastomas (GBMs) are highly lethal primary brain tumors. Despite current therapeutic advances in other solid cancers, the treatment of these malignant gliomas remains essentially palliative. GBMs are extremely resistant to conventional radiation and chemotherapies. We and others have demonstrated that a highly tumorigenic subpopulation of cancer cells called GBM stem cells (GSCs) promotes therapeutic resistance. We also found that GSCs stimulate tumor angiogenesis by expressing elevated levels of VEGF and contribute to tumor growth, which has been translated into a useful therapeutic strategy in the treatment of recurrent or progressive GBMs. Furthermore, stem cell-like cancer cells (cancer stem cells) have been shown to promote metastasis. Although GBMs rarely metastasize beyond the central nervous system, these highly infiltrative cancers often invade into normal brain tissues preventing surgical resection, and GSCs display an aggressive invasive phenotype. These studies suggest that targeting GSCs may effectively reduce tumor recurrence and significantly improve GBM treatment. Recent studies indicate that cancer stem cells share core signaling pathways with normal somatic or embryonic stem cells, but also display critical distinctions that provide important clues into useful therapeutic targets. In this review, we summarize the current understanding and advances in glioma stem cell research, and discuss potential targeting strategies for future development of anti-GSC therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号