首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Today, bacterial cellulose has received a great deal of attention for its medical applications due to its unique structural properties such as high porosity, good fluid uptake, good strength, and biocompatibility. This study aimed to fabricate and study bacterial cellulose/graphitic carbon nitride/nettles/trachyspermum nanocomposite by immersion and PVA/BC/g-C3N4/nettles/trachyspermum nanofiber by electrospinning method as a wound dressing. The g-C3N4 and g-C3N4 solution were synthesized and then were characterized using Fourier transform infrared, X-ray diffraction, Zeta Potential, and scanning electronic microscope analyzes. Also, the antibacterial properties of the synthesized materials were proved by gram-positive and gram-negative bacteria using the minimum inhibitory concentration method. Besides, the toxicity, migration, and cell proliferation results of the synthesized materials on NIH 3T3 fibroblasts were evaluated using MTT and scratch assays and showed that the BC/PVA/g-C3N4/nettles/trachyspermum composite not only had no toxic effect on cells but also contributed to cell survival, cell migration, and proliferation has done. To evaluate the mechanical properties, a tensile strength test was performed on PVA/BC/g-C3N4/nettles/trachyspermum nanofibers, and the results showed good strength of the nanocomposite. In addition, in vivo assay, the produced nanofibers were used to evaluate wound healing, and the results showed that these nanofibers were able to accelerate the wound healing process so that after 14 days, the wound healing percentage showed 95%. Therefore, this study shows that PVA/BC/g-C3N4/nettles/trachyspermum nanofibers effectively inhibit bacterial growth and accelerate wound healing.  相似文献   

2.
As an aim toward developing biologically mimetic and functional nanofiber-based tissue engineering scaffolds, we demonstrated the encapsulation of a model protein, fluorescein isothiocyanate-conjugated bovine serum albumin (fitcBSA), along with a water-soluble polymer, poly(ethylene glycol) (PEG), within the biodegradable poly(epsilon-caprolactone) (PCL) nanofibers using a coaxial electrospinning technique. By variation of the inner flow rates from 0.2 to 0.6 mL/h with a constant outer flow rate of 1.8 mL/h, fitcBSA loadings of 0.85-2.17 mg/g of nanofibrous membranes were prepared. Variation of flow rates also resulted in increases of fiber sizes from ca. 270 nm to 380 nm. The encapsulation of fitcBSA/PEG within PCL was subsequently characterized by laser confocal scanning microscopy, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analysis. In vitro release studies were conducted to evaluate sustained release potential of the core-sheath-structured composite nanofiber PCL-r-fitcBSA/PEG. As a negative control, composite nanofiber PCL/fitcBSA/PEG blend was prepared from a normal electrospinning method. It was found that core-sheath nanofibers PCL-r-fitcBSA/PEG pronouncedly alleviated the initial burst release for higher protein loading and gave better sustainability compared to that of PCL/fitcBSA/PEG nanofibers. The present study would provide a basis for further design and optimization of processing conditions to control the nanostructure of core-sheath composite nanofibers and ultimately achieve desired release kinetics of bioactive proteins (e.g., growth factors) for practical tissue engineering applications.  相似文献   

3.
Zhou C  Chu R  Wu R  Wu Q 《Biomacromolecules》2011,12(7):2617-2625
An electrospinning process was successfully used to fabricate polyethylene oxide/cellulose nanocrystal (PEO/CNC) composite nanofibrous mats. Transition of homogeneous to heterogeneous microstructures was achieved by tailoring the concentration of PEO/CNC mixture in the solution from 5 to 7 wt %. Morphology investigation of the obtained nanofibers demonstrated that rod-shaped CNCs were well-dispersed in the as-spun nanofibers and highly aligned along the nanofiber long-axis. PEO/CNC nanofibers became more uniform and smaller in diameter with increased CNC-loading level. The heterogeneous composite mats were composed of rigid-flexible bimodal nanofibers. Results of structure characterization indicated that the incorporated CNCs interacted strongly with the PEO matrix through hydrogen bonding. Mechanical properties of both types of mats were effectively improved by using CNCs, with heterogeneous mats being stronger than their homogeneous counterparts for all compositions (0-20 wt % CNC contents). When a smaller diameter needle was used to form homogeneous mats, enhanced thermal and mechanical properties were obtained.  相似文献   

4.
Electrospinning: A fascinating fiber fabrication technique   总被引:2,自引:0,他引:2  
With the emergence of nanotechnology, researchers become more interested in studying the unique properties of nanoscale materials. Electrospinning, an electrostatic fiber fabrication technique has evinced more interest and attention in recent years due to its versatility and potential for applications in diverse fields. The notable applications include in tissue engineering, biosensors, filtration, wound dressings, drug delivery, and enzyme immobilization. The nanoscale fibers are generated by the application of strong electric field on polymer solution or melt. The non-wovens nanofibrous mats produced by this technique mimics extracellular matrix components much closely as compared to the conventional techniques. The sub-micron range spun fibers produced by this process, offer various advantages like high surface area to volume ratio, tunable porosity and the ability to manipulate nanofiber composition in order to get desired properties and function. Over the years, more than 200 polymers have been electropun for various applications and the number is still increasing gradually with time. With these in perspectives, we aim to present in this review, an overview of the electrospinning technique with its promising advantages and potential applications. We have discussed the electrospinning theory, spinnable polymers, parameters (solution and processing), which significantly affect the fiber morphology, solvent properties and melt electrospinning (alternative to solution electrospinning). Finally, we have focused on varied applications of electrospun fibers in different fields and concluded with the future prospects of this efficient technology.  相似文献   

5.
Recent biomedical hydrogels applications require the development of nanostructures with controlled diameter and adjustable mechanical properties. Here we present a technique for the production of flexible nanofilaments to be used as drug carriers or in microfluidics, with deformability and elasticity resembling those of long DNA chains. The fabrication method is based on the core-shell electrospinning technique with core solution polymerisation post electrospinning. Produced from the nanofibers highly deformable hydrogel nanofilaments are characterised by their Brownian motion and bending dynamics. The evaluated mechanical properties are compared with AFM nanoindentation tests.  相似文献   

6.
Strong nanofibers composed entirely of a model globular protein, namely, bovine serum albumin (BSA), were produced by electrospinning directly from a BSA solution without the use of chemical cross-linkers. Control of the spinnability and the mechanical properties of the produced nanofibers was achieved by manipulating the protein conformation, protein aggregation, and intra/intermolecular disulfide bonds exchange. In this manner, a low-viscosity globular protein solution could be modified into a polymer-like spinnable solution and easily spun into fibers whose mechanical properties were as good as those of natural fibers made of fibrous protein. We demonstrate here that newly formed disulfide bonds (intra/intermolecular) have a dominant role in both the formation of the nanofibers and in providing them with superior mechanical properties. Our approach to engineer proteins into biocompatible fibrous structures may be used in a wide range of biomedical applications such as suturing, wound dressing, and wound closure.  相似文献   

7.
Silk fibroin (SF), extracted from Bombyx mori, has unique physicochemical properties to achieve an efficient wound dressing. In this study, reduced graphene oxide (RGO)/ZnO NPs/silk fibroin nanocomposite was made, and an innovative nanofiber of SF/polyvinyl alcohol (PVA)/RGO/ZnO NPs was ready with the electrospinning technique and successfully characterized. The results of MIC and OD analyses were used to investigate the synthesized materials' antibacterial effects and displayed that the synthesized materials could inhibit growth against Staphylococcus aureus and Escherichia coli bacteria. However, both in vitro cytotoxicity (MTT) and scratch wound studies have shown that RGO/ZnO NPs and SF/PVA/RGO/ZnO NPs are not only non-toxic to NIH 3T3 fibroblasts, but also can cause cell viability, cell proliferation, and cell migration. Furthermore, improving the synthesized nanofiber's structural properties in the presence of RGO and ZnO NPs has been confirmed by performing tensile strength, contact angle, and biodegradation analyses. Also, in a cell attachment analysis, fibroblast cells had migrated and expanded well in the nanofibrous structures. Moreover, in vivo assay, SF/PVA/RGO/ZnO NPs nanofiber treated rats and has been shown significant healing activity and tissue regeneration compared with other treated groups. Therefore, this study suggests that SF/PVA/RGO/ZnO NPs nanofiber is a hopeful wound dressing for preventing bacteria growth and improving superficial wound repair.  相似文献   

8.
Electrospinning, due to its versatility and potential for applications in various fields, is being frequently used to fabricate nanofibers. Production of these porous nanofibers is of great interest due to their unique physiochemical properties. Here we elaborate on the fabrication of keratin containing poly (ε-caprolactone) (PCL) nanofibers (i.e., PCL/keratin composite fiber). Water soluble keratin was first extracted from human hair and mixed with PCL in different ratios. The blended solution of PCL/keratin was transformed into nanofibrous membranes using a laboratory designed electrospinning set up. Fiber morphology and mechanical properties of the obtained nanofiber were observed and measured using scanning electron microscopy and tensile tester. Furthermore, degradability and chemical properties of the nanofiber were studied by FTIR. SEM images showed uniform surface morphology for PCL/keratin fibers of different compositions. These PCL/keratin fibers also showed excellent mechanical properties such as Young''s modulus and failure point. Fibroblast cells were able to attach and proliferate thus proving good cell viability. Based on the characteristics discussed above, we can strongly argue that the blended nanofibers of natural and synthetic polymers can represent an excellent development of composite materials that can be used for different biomedical applications.  相似文献   

9.
Nie H  He A  Zheng J  Xu S  Li J  Han CC 《Biomacromolecules》2008,9(5):1362-1365
As a natural biopolymer, sodium alginate (SA) has been widely used in the biomedical field in the form of powder, liquid, gel, and compact solid, but not in the form of nanofiber. Electrospinning is an effective method to fabricate nanofibers. However, electrospinning of SA from its aqueous solution is still a challenge. In this study, an effort has been made to solve this problem and find the key reasons that hinder the electrospinning of alginate aqueous solution. Through this research, it was found that pure SA nanofibers could be fabricated successfully by introducing a strong polar cosolvent, glycerol, into the SA aqueous solutions. The study on the properties of the modified SA solution showed that increasing glycerol content increased the viscosity of the SA solution greatly and, meanwhile, decreased the surface tension and the conductivity of the SA solution. The rheological results indicated that the increase in glycerol content could result in the enhanced entanglements of SA chains. Two schematic molecular models were proposed to depict the change of SA chain conformation in aqueous solution with and without glycerol. The main contribution of glycerol to the electrospinning process is to improve the flexibility and entanglement of SA chains by disrupting the strong inter- and intramolecular hydrogen bondings among SA chains, then forming new hydrogen bondings with SA chains.  相似文献   

10.
Nanofibers and their applications in tissue engineering   总被引:2,自引:0,他引:2  
Developing scaffolds that mimic the architecture of tissue at the nanoscale is one of the major challenges in the field of tissue engineering. The development of nanofibers has greatly enhanced the scope for fabricating scaffolds that can potentially meet this challenge. Currently, there are three techniques available for the synthesis of nanofibers: electrospinning, self-assembly, and phase separation. Of these techniques, electrospinning is the most widely studied technique and has also demonstrated the most promising results in terms of tissue engineering applications. The availability of a wide range of natural and synthetic biomaterials has broadened the scope for development of nanofibrous scaffolds, especially using the electrospinning technique. The three dimensional synthetic biodegradable scaffolds designed using nanofibers serve as an excellent framework for cell adhesion, proliferation, and differentiation. Therefore, nanofibers, irrespective of their method of synthesis, have been used as scaffolds for musculoskeletal tissue engineering (including bone, cartilage, ligament, and skeletal muscle), skin tissue engineering, vascular tissue engineering, neural tissue engineering, and as carriers for the controlled delivery of drugs, proteins, and DNA. This review summarizes the currently available techniques for nanofiber synthesis and discusses the use of nanofibers in tissue engineering and drug delivery applications.  相似文献   

11.
Mechanisms and control of silk-based electrospinning   总被引:1,自引:0,他引:1  
Zhang F  Zuo B  Fan Z  Xie Z  Lu Q  Zhang X  Kaplan DL 《Biomacromolecules》2012,13(3):798-804
Silk fibroin (SF) nanofibers, formed through electrospinning, have attractive utility in regenerative medicine due to the biocompatibility, mechanical properties, and tailorable degradability. The mechanism of SF electrospun nanofiber formation was studied to gain new insight into the formation and control of nanofibers. SF electrospinning solutions with different nanostructures (nanospheres or nanofilaments) were prepared by controlling the drying process during the preparation of regenerated SF films. Compared to SF nanospheres in solution, SF nanofilaments had better spinnability with lower viscosity when the concentration of silk protein was below 10%, indicating a critical role for SF morphology, and in particular, nanostructures, for the formation of electrospun fibers. More interesting, the diameter of electrospun fibers gradually increased from 50 to 300 nm as the concentration of SF nanofilaments in the solution increased from 6 to 12%, implying size control by simply adjusting SF nanostructure and concentration. Aside from process parameters investigated in previous studies, such as SF concentration, viscosity, and electrical potential, the present mechanism emphasizes significant influence of SF nanostructure on spinnability and diameter control of SF electrospun fibers, providing a controllable option for the preparation of silk-based electrospun scaffolds for biomaterials, drug delivery, and tissue engineering needs.  相似文献   

12.
Y Li  F Chen  J Nie  D Yang 《Carbohydrate polymers》2012,90(4):1445-1451
The core-shell structure nanofibers of poly(lactic acid)/chitosan with different weight ratios were successfully electrospun from homogeneous solution. The preparation process was more simple and effective than double-needle electrospinning. The nanofibers were obtained with chitosan in shell while poly(lactic acid) in core attributing to phase separation, which were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). The electrospun nanofibrous membrane was evaluated in vitro by using mouse fibroblasts (L929) as reference cell lines. Cell culture results indicated that these materials were good in promoting cell growth and attachment, thus they could be used for tissue engineering and wound healing dressing.  相似文献   

13.
The effect of nanofiber surface coatings on the cell's proliferation behavior was studied. Individually collagen-coated poly(epsilon-caprolactone) (PCL) nanofibers (i.e., Collagen-r-PCL in the form of a core-shell structure) were prepared by a coaxial electrospinning technique. A roughly collagen-coated PCL nanofibrous matrix was also prepared by soaking the PCL matrix in a 10 mg/mL collagen solution overnight. These two types of coated nanofibers were then used to investigate differences in biological responses in terms of proliferation and cell morphology of human dermal fibroblasts (HDF). It was found that coatings of collagen on PCL nanofibrous matrix definitely favored cells proliferation, and the efficiency is coating means dependent. As compared to PCL, the HDF density on the Collagen-r-PCL nanofiber membrane almost increased linearly by 19.5% (2 days), 22.9% (4 days), and 31.8% (6 days). In contrast, the roughly collagen-coated PCL increased only by 5.5% (2 days), 11.0% (4 days), and 21.0% (6 days). SEM observation indicated that the Collagen-r-PCL nanofibers encouraged cell migration inside the scaffolds. These findings suggest that the Collagen-r-PCL nanofibers can be used as novel functional biomimetic nanofibers toward achieving excellent integration between cells and scaffolds for tissue engineering applications.  相似文献   

14.
Turmeric (Curcuma longa) is a popular Indian spice that has been used for centuries in herbal medicines for the treatment of a variety of ailments such as rheumatism, diabetic ulcers, anorexia, cough and sinusitis. Curcumin (diferuloylmethane) is the main curcuminoid present in turmeric and responsible for its yellow color. Curcumin has been shown to possess significant anti-inflammatory, anti-oxidant, anti-carcinogenic, anti-mutagenic, anti-coagulant and anti-infective effects. Curcumin has also been shown to have significant wound healing properties. It acts on various stages of the natural wound healing process to hasten healing. This review summarizes and discusses recently published papers on the effects of curcumin on skin wound healing. The highlighted studies in the review provide evidence of the ability of curcumin to reduce the body's natural response to cutaneous wounds such as inflammation and oxidation. The recent literature on the wound healing properties of curcumin also provides evidence for its ability to enhance granulation tissue formation, collagen deposition, tissue remodeling and wound contraction. It has become evident that optimizing the topical application of curcumin through altering its formulation is essential to ensure the maximum therapeutical effects of curcumin on skin wounds.  相似文献   

15.
Pham QP  Sharma U  Mikos AG 《Biomacromolecules》2006,7(10):2796-2805
The physical and spatial architectural geometries of electrospun scaffolds are important to their application in tissue engineering strategies. In this work, poly(epsilon-caprolactone) microfiber scaffolds with average fiber diameters ranging from 2 to 10 microm were individually electrospun to determine the parameters required for reproducibly fabricating scaffolds. As fiber diameter increased, the average pore size of the scaffolds, as measured by mercury porosimetry, increased (values ranging from 20 to 45 microm), while a constant porosity was observed. To capitalize on both the larger pore sizes of the microfiber layers and the nanoscale dimensions of the nanofiber layers, layered scaffolds were fabricated by sequential electrospinning. These scaffolds consisted of alternating layers of poly(epsilon-caprolactone) microfibers and poly(epsilon-caprolactone) nanofibers. By electrospinning the nanofiber layers for different lengths of time, the thickness of the nanofiber layers could be modulated. Bilayered constructs consisting of microfiber scaffolds with varying thicknesses of nanofibers on top were generated and evaluated for their potential to affect rat marrow stromal cell attachment, spreading, and infiltration. Cell attachment after 24 h did not increase with increasing number of nanofibers, but the presence of nanofibers enhanced cell spreading as evidenced by stronger F-actin staining. Additionally, increasing the thickness of the nanofiber layer reduced the infiltration of cells into the scaffolds under both static and flow perfusion culture for the specific conditions tested. The scaffold design presented in this study allows for cellular infiltration into the scaffolds while at the same time providing nanofibers as a physical mimicry of extracellular matrix.  相似文献   

16.
Wound healing is a highly ordered process, requiring complex and coordinated interactions involving peptide growth factors of which transforming growth factor-beta (TGF-beta) is one of the most important. Nitric oxide is also an important factor in healing and its production is regulated by inducible nitric oxide synthase (iNOS). We have earlier shown that curcumin (diferuloylmethane), a natural product obtained from the plant Curcuma longa, enhances cutaneous wound healing in normal and diabetic rats. In this study, we have investigated the effect of curcumin treatment by topical application in dexamethasone-impaired cutaneous healing in a full thickness punch wound model in rats. We assessed healing in terms of histology, morphometry, and collagenization on the fourth and seventh days post-wounding and analyzed the regulation of TGF-beta1, its receptors type I (tIrc) and type II (tIIrc) and iNOS. Curcumin significantly accelerated healing of wounds with or without dexamethasone treatment as revealed by a reduction in the wound width and gap length compared to controls. Curcumin treatment resulted in the enhanced expression of TGF-beta1 and TGF-beta tIIrc in both normal and impaired healing wounds as revealed by immunohistochemistry. Macrophages in the wound bed showed an enhanced expression of TGF-beta1 mRNA in curcumin treated wounds as evidenced by in situ hybridization. However, enhanced expression of TGF-beta tIrc by curcumin treatment observed only in dexamethasone-impaired wounds at the 7th day post-wounding. iNOS levels were increased following curcumin treatment in unimpaired wounds, but not so in the dexamethasone-impaired wounds. The study indicates an enhancement in dexamethasone impaired wound repair by topical curcumin and its differential regulatory effect on TGF-beta1, it's receptors and iNOS in this cutaneous wound-healing model.  相似文献   

17.
In this study, biodegradable poly(ε-caprolactone) (PCL) nanofibers (PCL-NF), collagen-coated PCL nanofibers (Col-c-PCL), and titanium dioxide-incorporated PCL (TiO2-i-PCL) nanofibers were prepared by electrospinning technique to study the surface and structural compatibility of these scaffolds for skin tisuue engineering. Collagen coating over the PCL nanofibers was done by electrospinning process. Morphology of PCL nanofibers in electrospinning was investigated at different voltages and at different concentrations of PCL. The morphology, interaction between different materials, surface property, and presence of TiO2 were studied by scanning electron microscopy (SEM), Fourier transform IR spectroscopy (FTIR), contact angle measurement, energy dispersion X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). MTT assay and cell adhesion study were done to check biocompatibilty of these scaffolds. SEM study confirmed the formation of nanofibers without beads. FTIR proved presence of collagen on PCL scaffold, and contact angle study showed increment of hydrophilicity of Col-c-PCL and TiO2-i-PCL due to collagen coating and incorporation of TiO2, respectively. EDX and XPS studies revealed distribution of entrapped TiO2 at molecular level. MTT assay and cell adhesion study using L929 fibroblast cell line proved viability of cells with attachment of fibroblasts over the scaffold. Thus, in a nutshell, we can conclude from the outcomes of our investigational works that such composite can be considered as a tissue engineered construct for skin wound healing.  相似文献   

18.
Novel chitin and chitosan nanofibers in biomedical applications   总被引:2,自引:0,他引:2  
Chitin and its deacetylated derivative, chitosan, are non-toxic, antibacterial, biodegradable and biocompatible biopolymers. Due to these properties, they are widely used for biomedical applications such as tissue engineering scaffolds, drug delivery, wound dressings, separation membranes and antibacterial coatings, stent coatings, and sensors. In the recent years, electrospinning has been found to be a novel technique to produce chitin and chitosan nanofibers. These nanofibers find novel applications in biomedical fields due to their high surface area and porosity. This article reviews the recent reports on the preparation, properties and biomedical applications of chitin and chitosan based nanofibers in detail.  相似文献   

19.
In this study, silk sericin nanofibers from sericin hope-silkworm, whose cocoons consist almost exclusively of sericin were successfully prepared by electrospinning method. Scanning electron microscopy (SEM) was used to observe the morphology of the fibers. The effect of spinning conditions, including the concentration of sericin cocoon solution, acceleration voltage, spinning distance and flow rate on the fiber morphologies and the size distribution of sericin nanofibers were examined. The structure and physical properties were also observed by Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TG). The optimum conditions for producing finely thinner fibrous sericin nanofibers without beads were the concentration of sericin solution above 6-8 wt%, acceleration voltage ranging from 25 to 32 kV, spinning distance above 9 cm, and flow rate above 0.06 cm min(-1). The mean diameter of as spun sericin fibers varied from 114 to 430 nm at the different spinning conditions. In the as-spun fibers, silk sericin was present in a random coil conformation, while after methanol treatment, the molecular structure of silk sericin was transformed into a β-sheet containing structure. Sericin hope nanofiber demonstrated thermal degradation at lower temperature than the sericin hope cocoon, which probably due to the randomly coiled rich structure of the sericin hope nanofiber.  相似文献   

20.
In the present study, we prepared a gelatin nanofiber matrix using an electrospinning technique and cross-linked the nanofibers with 10 % glutaraldehyde vapors. The insoluble nanofibers were functionalized with bioactive molecules like biotin (1 %) and galactose (1 %) by adsorption and coelectrospinning. Surface morphology and fiber dimension were analyzed using atomic force microscopy. The amounts of biotin and galactose bound to the nanofibers before and after adsorption were quantified using high-performance liquid chromatography. Human larynx carcinoma (HEp-2) cell attachment, morphology and cytotoxic characteristics were studied using crystal violet staining and the MTT assay. Cell attachment and viability were highest in biotin- and galactose-embedded nanofibers compared to native nanofibers. Cytotoxicity was less with biotin- and galactose-embedded and adsorbed nanofibers compared to control nanofibers. Hence, we suggest that these biocompatible, nontoxic, biodegradable, functionalized nanofibers could be a potential candidate for application in tissue engineering and scaffold preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号