首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Biotechnology advances》2014,32(3):575-582
The population of sub-Saharan Africa is at risk from multiple, poverty-related endemic diseases. HIV and malaria are the most prevalent, but they disproportionately affect different groups of people, i.e. HIV predominantly affects sexually-active adults whereas malaria has a greater impact on children and pregnant women. Nevertheless, there is a significant geographical and epidemiological overlap which results in bidirectional and synergistic interactions with important consequences for public health. The immunosuppressive effects of HIV increase the risk of infection when individuals are exposed to malaria parasites and also the severity of malaria symptoms. Similarly, acute malaria can induce a temporary increase in the HIV viral load. HIV is associated with a wide range of opportunistic infections that can be misdiagnosed as malaria, resulting in the wasteful misuse of antimalarial drugs and a failure to address the genuine cause of the disease. There is also a cumulative risk of toxicity when antiretroviral and antimalarial drugs are given to the same patients. Synergistic approaches involving the control of malaria as a strategy to fight HIV/AIDS and vice versa are therefore needed in co-endemic areas. Plant biotechnology has emerged as a promising approach to tackle poverty-related diseases because plant-derived drugs and vaccines can be produced inexpensively in developing countries and may be distributed using agricultural infrastructure without the need for a cold chain. Here we explore some of the potential contributions of plant biotechnology and its integration into broader multidisciplinary public health programs to combat the two diseases in developing countries.  相似文献   

2.
Despite important success of preventive vaccination in eradication of smallpox and in reduction in incidence of poliomyelitis and measles, infectious diseases remain the principal cause of mortality in the world. Technologies used in the development of vaccines used so far, mostly based on empirical approaches, are limited and insufficient to fight diseases like malaria, acquired immunodeficiency syndrome (AIDS) or adult tuberculosis. Until recently, technologies for making vaccines were based on live attenuated microorganisms, whole killed microorganisms and subunit vaccines such as purified toxoids. Fortunately, the recent advances in the understanding of host-pathogen interaction as well as our increasing knowledge of how immune responses are triggered and regulated have opened almost unlimited possibilities of developing new immunization strategies based on recombinant microorganisms or recombinant polypeptides or bacterial or viral vectors, synthetic peptides, natural or synthetic polysaccharides or plasmid DNA. Thus, considering the expending number of technologies available for making vaccines, it becomes possible for the first time in the history of vaccinology to design vaccines based on a rational approach and leading to increased efficacy and safety.  相似文献   

3.
Infections by intracellular pathogens such as viruses, some bacteria and many parasites, are cleared in most cases after activation of specific T cellular immune responses that recognize foreign antigens and eliminate infected cells. Vaccines against those infectious organisms have been traditionally developed by administration of whole live attenuated or inactivated microorganisms. Nowadays, research is focused on the development of subunit vaccines, containing the most immunogenic antigens from the particular pathogen. However, when purified subunit vaccines are administered using traditional immunization protocols, the levels of cellular immunity induced are mostly low and not capable of eliciting complete protection against diseases caused by intracellular microbes. In this review, we present a promising alternative to those traditional protocols, which is the use of recombinant viruses encoding subunit vaccines as immunization tools. Recombinant viruses have several interesting features that make them extremely efficient at inducing immune responses mediated by T-lymphocytes. This cellular immunity has recently been demonstrated to be of key importance for protection against malaria and AIDS, both of which are major targets of the World Health Organization for vaccine development. Thus, this review will focus in particular on the development of new vaccination protocols against these diseases.  相似文献   

4.
Vaccines represent the most commonly employed immunologic intervention in medicine today. DNA vaccination or genetic immunization is a rapidly developing technology that offers new approaches for the prevention of disease. This method of vaccination provides a stable and long-lived source of the protein vaccine, and it is a simple, robust, and effective means of eliciting both antibody- and cell-mediated immune responses. Furthermore, DNA vaccines have a number of potential advantages such as they can address several diseases in one vaccine, they are cheap and easy to produce and have no special cold storage requirement because they are extremely stable. It has proven to be a generally applicable technology in various preclinical animal models of infectious and noninfectious diseases, and several DNA vaccines have now entered phase I/II, human clinical trials. There are several hurdles that need to be overcome on the road to the use of DNA vaccines widely. These include the technical challenges of improving delivery and/or potency so that low doses of DNA can achieve the efficacy of conventional vaccines.  相似文献   

5.
Increasing awareness of microbial threat has rekindled interest in the great potential of vaccines for controlling infectious diseases. The fact that diseases caused by intracellular pathogens cannot be overcome by chemotherapy alone has increased our interest in the generation of highly efficacious novel vaccines. Vaccines have proven their efficacy, as the immunoprotection they induce appears to be mediated by long-lived humoral immune responses. However, there are no consistently effective vaccines available against diseases such as tuberculosis and HIV, and other infections caused by intracellular pathogens, which are predominantly controlled by T lymphocytes. This review describes the T-cell populations and the type of immunity that should be activated by successful DNA vaccines against intracellular pathogens. It further discusses the parameters that need to be fulfilled by protective T-cell Ag. We then discuss future approaches for DNA vaccination against diseases in which cell-mediated immune responses are essential for providing protection.  相似文献   

6.
It is obvious that there is a critical need for an efficient malaria vaccine to accelerate malaria eradication. Currently, recombinant subunit vaccination against malaria using proteins and peptides is gaining attention. However, one of the major drawbacks of this approach is the lack of an efficient and durable immune response. Therefore, subunit vaccines require adjuvants to make the vaccine sufficiently immunogenic. Considering the history of the RTS,S vaccine, it seems likely that no single adjuvant is capable of eliciting all the protective immune responses required in many malarial subunit vaccines and the use of combination adjuvants will be increasingly important as the science of malaria vaccines advances. In light of this, it appears that identifying the most effective mixture of adjuvants with minimal adverse effects offers tremendous opportunities in improving the efficacy of vaccines against malaria. Owing to the importance of a multi-adjuvanted approach in subunit malaria vaccine development, this review paper outlines some of the best known combination adjuvants used in malaria subunit vaccines, focusing on their proposed mechanisms of action, their immunological properties, and their notable results. The aim of the present review is to consolidate these findings to aid the application of these combination adjuvants in experimental malaria vaccines.  相似文献   

7.
Vaccination has made an enormous contribution to global health. Two major infections, smallpox and rinderpest, have been eradicated. Global coverage of vaccination against many important infectious diseases of childhood has been enhanced dramatically since the creation of WHO''s Expanded Programme of Immunization in 1974 and of the Global Alliance for Vaccination and Immunization in 2000. Polio has almost been eradicated and success in controlling measles makes this infection another potential target for eradication. Despite these successes, approximately 6.6 million children still die each year and about a half of these deaths are caused by infections, including pneumonia and diarrhoea, which could be prevented by vaccination. Enhanced deployment of recently developed pneumococcal conjugate and rotavirus vaccines should, therefore, result in a further decline in childhood mortality. Development of vaccines against more complex infections, such as malaria, tuberculosis and HIV, has been challenging and achievements so far have been modest. Final success against these infections may require combination vaccinations, each component stimulating a different arm of the immune system. In the longer term, vaccines are likely to be used to prevent or modulate the course of some non-infectious diseases. Progress has already been made with therapeutic cancer vaccines and future potential targets include addiction, diabetes, hypertension and Alzheimer''s disease.  相似文献   

8.
The availability of effective vaccines has had the most profound positive effect on improving the quality of public health by preventing infectious diseases. Despite many successful vaccines, there are still old and new emerging pathogens against which there is no vaccine available. A better understanding of how vaccines work for providing protection will help to improve current vaccines as well as to develop effective vaccines against pathogens for which we do not have a proper means to control. Recent studies have focused on innate immunity as the first line of host defense and its role in inducing adaptive immunity; such studies have been an intense area of research, which will reveal the immunological mechanisms how vaccines work for protection. Toll-like receptors (TLRs), a family of receptors for pathogen-associated molecular patterns on cells of the innate immune system, play a critical role in detecting and responding to microbial infections. Importantly, the innate immune system modulates the quantity and quality of longterm T and B cell memory and protective immune responses to pathogens. Limited studies suggest that vaccines which mimic natural infection and/or the structure of pathogens seem to be effective in inducing long-term protective immunity. A better understanding of the similarities and differences of the molecular and cellular events in host responses to vaccination and pathogen infection would enable the rationale for design of novel preventive measures against many challenging pathogens.  相似文献   

9.
The exponentially growing human population and the emergence of new diseases are clear indications that the world can no longer depend solely on conventional vaccine technologies and production schemes. The race to find a new vaccine technology is crucial to help speed up and complement the World Health Organization (WHO) disease elimination program. The ultimate goal is to uncover fast and efficient production schemes in the event of a pandemic, and also to effectively fight deadly diseases such as malaria, bird flu, hepatitis, and human immunodeficiency virus (HIV). Plasmid DNA vaccines, if properly formulated, offer specific priming of the immune system and similar or even better prophylactic effects than conventional vaccines. This article discusses many of the critical issues that need to be considered when developing fast, effective, and reliable plasmid DNA vaccine manufacturing processes. Different modes of plasmid production via bacterial fermentation are compared. Plasmid purification by chromatography is specifically discussed as it is the most commercially viable bioprocess engineering technique for continuous purification of supercoiled plasmid DNA. Current techniques and progress covering the area of plasmid DNA vaccine design, formulation, and delivery are also put forward.  相似文献   

10.
Vaccine-induced protection against diseases like malaria, AIDS, and cancer may require induction of Ag-specific CD8(+) and CD4(+) T cell and Ab responses in the same individual. In humans, a recombinant Plasmodium falciparum circumsporozoite protein (PfCSP) candidate vaccine, RTS,S/adjuvant system number 2A (AS02A), induces T cells and Abs, but no measurable CD8(+) T cells by CTL or short-term (ex vivo) IFN-gamma ELISPOT assays, and partial short-term protection. P. falciparum DNA vaccines elicit CD8(+) T cells by these assays, but no protection. We report that sequential immunization with a PfCSP DNA vaccine and RTS,S/AS02A induced PfCSP-specific Abs and Th1 CD4(+) T cells, and CD8(+) cytotoxic and Tc1 T cells. Depending upon the immunization regime, CD4(+) T cells were involved in both the induction and production phases of PfCSP-specific IFN-gamma responses, whereas, CD8(+) T cells were involved only in the production phase. IFN-gamma mRNA up-regulation was detected in both CD45RA(-) (CD45RO(+)) and CD45RA(+)CD4(+) and CD8(+) T cell populations after stimulation with PfCSP peptides. This finding suggests CD45RA(+) cells function as effector T cells. The induction in humans of the three primary Ag-specific adaptive immune responses establishes a strategy for developing immunization regimens against diseases in desperate need of vaccines.  相似文献   

11.
Cell-mediated immunity plays a crucial role in the control of many infectious diseases, necessitating the need for adjuvants that can augment cellular immune responses elicited by vaccines. It is well established that protection against one such disease, malaria, requires strong CD8(+) T cell responses targeted against the liver stages of the causative agent, Plasmodium spp. In this report we show that the dendritic cell-specific chemokine, dendritic cell-derived CC chemokine 1 (DC-CK1), which is produced in humans and acts on naive lymphocytes, can enhance Ag-specific CD8(+) T cell responses when coadministered with either irradiated Plasmodium yoelii sporozoites or a recombinant adenovirus expressing the P. yoelii circumsporozoite protein in mice. We further show that these enhanced T cell responses result in increased protection to malaria in immunized mice challenged with live P. yoelii sporozoites, revealing an adjuvant activity for DC-CK1. DC-CK1 appears to act preferentially on naive mouse lymphocytes, and its adjuvant effect requires IL-12, but not IFN-gamma or CD40. Overall, our results show for the first time an in vivo role for DC-CK1 in the establishment of primary T cell responses and indicate the potential of this chemokine as an adjuvant for vaccines against malaria as well as other diseases in which cellular immune responses are important.  相似文献   

12.
The exponentially growing human population and the emergence of new diseases are clear indications that the world can no longer depend solely on conventional vaccine technologies and production schemes. The race to find a new vaccine technology is crucial to help speed up and complement the World Health Organization (WHO) disease elimination program. The ultimate goal is to uncover fast and efficient production schemes in the event of a pandemic, and also to effectively fight deadly diseases such as malaria, bird flu, hepatitis, and human immunodeficiency virus (HIV). Plasmid DNA vaccines, if properly formulated, offer specific priming of the immune system and similar or even better prophylactic effects than conventional vaccines. This article discusses many of the critical issues that need to be considered when developing fast, effective, and reliable plasmid DNA vaccine manufacturing processes. Different modes of plasmid production via bacterial fermentation are compared. Plasmid purification by chromatography is specifically discussed as it is the most commercially viable bioprocess engineering technique for continuous purification of supercoiled plasmid DNA. Current techniques and progress covering the area of plasmid DNA vaccine design, formulation, and delivery are also put forward.  相似文献   

13.
The global HIV vaccine enterprise.   总被引:3,自引:0,他引:3  
AIDS, which twenty-five years ago no one even knew it existed, has become the most serious infectious disease worldwide. The development of an HIV vaccine is one of the most difficult challenges that modern biomedical science is confronting. To address this challenge, scientists may need to organize themselves in a more intense, targeted, and collaborative effort, such as the one proposed by the Global HIV/AIDS Vaccine Enterprise. The enterprise concept proposes to complement the creativity of individual investigators with a collaborative system that ensures a more effective use of human and financial resources to produce new scientific knowledge. It also implies that the scientific knowledge can be harnessed in a targeted way to develop practical solutions to urgent global health problems, including explicit product development activities. Different modalities of the enterprise concept are being explored for the development of drugs to treat tuberculosis and vaccines to prevent malaria.  相似文献   

14.
Vaccination is the most effective and least expensive technique used for human diseases prevention and eradication. The need for more vaccine doses and the rapid establishment of facilities for the development of new vaccines are stimulating significate changes in the vaccine industry, which is gradually moving towards cell culture production. One approach is the third generation of vaccines, which are based on the use of plasmid DNA (pDNA) containing transgenes that encode an antigen capable of mimicking intracellular pathogenic infection and triggering both humoral and cellular immune responses. Plasmid DNA vaccination has distinct advantages over other vaccine technologies in terms of safety, ease of fabrication and stability. The effectiveness of pDNA vaccines against viruses, bacteria, parasites and cancer cells has been demonstrated in preclinical and clinical assays. Furthermore, currently there are a few veterinary pDNA vaccines in the market. The application of a simple formulation of naked pDNA as a vaccine is attractive, but a low transfection efficiency is often obtained. The use of nanoparticles to increase transfection efficiency is an approach that has been tested clinically. This review provides a summary of vaccine production, advances and major challenges associated with pDNA lipid and polymeric nanovaccines applications.  相似文献   

15.
Prophylactic vaccination has made an essential contribution to the improvement of human health over the 20th century. However, we still lack efficient vaccines against major human diseases such as malaria or tuberculosis. Today, the design of therapeutic vaccines referred to as 'pharmaccines' is actively investigated in order to treat diseases such as cancer. In that context, novel ways to rationalize and accelerate vaccine discovery are needed. A series of advances in the fields of molecular biology and computer science, have greatly accelerated the rate at which candidate vaccine antigens can be discovered. In this review, we will present and discuss how applied genome research may facilitate antigen discovery and the design of new prophylactic and therapeutic vaccines.  相似文献   

16.
17.
The vaccines against infectious diseases in use today are, with few exceptions, prepared from the causal agents themselves, either by inactivating them with a chemical such as formaldehyde or by attenuating them so that they grow and thus evoke an immune response in the natural host but cause no disease. These empirical approaches have produced many highly successful vaccines. Increasing knowledge at the molecular level of the agents and of the immune response to protein antigent is now providing us with the opportunity to design vaccines that will elicit protective responses without the need to use the agents themselves. The critical issue is to identify the immune responses that correlate with protection.  相似文献   

18.
There is currently a major interest in designing vaccines capable of eliciting strong cellular immune responses. The induction of cytotoxic and Th1 helper cellular responses is for example highly desirable for vaccines targeting either chronic infectious diseases or cancers (therapeutic vaccines). Similarly, Th1 vaccines would be useful in redirecting inappropriate antigen-specific immune responses in patients with autoimmune diseases and allergies. Importantly, emerging technologies and a better understanding of the physiology of immune responses offer new avenues to rationally design such vaccines. Approaches based on the identification and selection of immunogens containing T cell epitopes can be used, together with epitope-enhancement strategies, to increase binding to MHC, or to improve recognition by T cell receptor complexes. Optimized immunogens can subsequently be presented to the immune system with appropriate vectors allowing to target professional antigen-presenting cells, such as dendritic cells. Such antigen presentation platforms can be used alone or in association, as part of mixed immunization regimens (heterologous prime-boosts), in order to elicit broad immune responses. The rational design of Th1 adjuvants can also benefit from our better understanding of the nature of proinflammatory signals leading to the initiation of both innate and adaptive immune effector mechanisms. Candidate Th1 vaccines (or components such as vectors or adjuvants) will have to be tested in exploratory clinical studies, implying a need for new assays and methods allowing to assess in a qualitative and quantitative manner low-frequency T cell responses in humans.  相似文献   

19.
Nanoscopic therapeutic systems that incorporate biomacromolecules, such as protein and peptides, are emerging as the next generation of nanomedicine aimed at improving the therapeutic efficacy of biomacromolecular drugs. In this study, we report that poly(γ-glutamic acid)-based nanoparticles (γ-PGA NPs) are excellent protein delivery carriers for tumor vaccines that delivered antigenic proteins to antigen-presenting cells and elicited potent immune responses. Importantly, γ-PGA NPs efficiently delivered entrapped antigenic proteins through cytosolic translocation from the endosomes, which is a key process of γ-PGA NP-mediated anti-tumor immune responses. Our findings suggest that the γ-PGA NP system is suitable for the intracellular delivery of protein-based drugs as well as tumor vaccines.  相似文献   

20.
Increased international support for both research into new vaccines and their deployment in developing countries has been evident over the past decade. In particular, the GAVI Alliance has had a major impact in increasing uptake of the six common infant vaccines as well as those against hepatitis B and yellow fever. It further aims to introduce pneumococcal and rotavirus vaccines in the near future and several others, including those against human papillomavirus, meningococcal disease, rubella and typhoid not long after that. In addition, there is advanced research into vaccines against malaria, HIV/AIDS and tuberculosis. By 2030, we may have about 20 vaccines that need to be used in the developing world. Finding the requisite funds to achieve this will pose a major problem. A second and urgent question is how to complete the job of global polio eradication. The new strategic plan calls for completion by 2013, but both pre-eradication and post-eradication challenges remain. Vaccines will eventually become available beyond the field of infectious diseases. Much interesting work is being done in both autoimmunity and cancer. Cutting across disease groupings, there are issues in methods of delivery and new adjuvant formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号