首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatocellular carcinoma (HCC) is one of the common malignant human tumors with high morbidity worldwide. Aberrant activation of the oncogenic phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling is related to clinicopathological features of HCC. Emerging data revealed that microRNAs (miRNAs) have prominent implications for regulating cellular proliferation, differentiation, apoptosis, and metabolism through targeting the PI3K/AKT/mTOR signaling axis. The recognition of the crucial role of miRNAs in hepatocarcinogenesis represents a promising area to identify novel anticancer therapeutics for HCC. The present study summarizes the major findings about the regulatory role of miRNAs in the PI3K/AKT/mTOR pathway in the pathogenesis of HCC.  相似文献   

2.
Glioma is a common primary brain tumor with high mortality rate and poor prognosis. Long noncoding RNA maternally expressed gene 3 (MEG3) is a tumor suppressor in diverse cancer types. However, the role of MEG3 in glioma remains unclear. We aimed to explore the effects of MEG3 on U251 cells as well as the underlying mechanisms. U251 cells were stably transfected with different recombined plasmids to overexpress or silence MEG3. Effects of aberrantly expressed MEG3 on cell viability, migration, apoptosis, expressions of apoptosis-associated and autophagy-associated proteins, and phosphorylated levels of key kinases in the PI3K/AKT/mTOR pathway were all evaluated. Then, messenger RNA (mRNA) and protein expression of Sirt7 in cells abnormally expressing MEG3 were estimated. In addition, effects of abnormally expressed MEG3 and Sirt7 on U251 cells were determined to reveal the underlying mechanism of MEG3-associated modulation. Cell viability and migration were significantly reduced by MEG3 overexpression whereas cell apoptosis as well as Bax and cleaved caspase-3/-9 proteins were obviously induced. Beclin-1 and LC3-II/LC3-I were upregulated and p62 was downregulated in MEG3 overexpressed cells. In addition, the autophagy pharmacological inhibitor (3-methyladenine, 3-MA) affected the effect of MEG3 overexpression on cell proliferation. Furthermore, the phosphorylated levels of key kinases in the PI3K/AKT/mTOR pathway were all reduced by MEG3 overexpression. Sirt7 was positively regulated by MEG3 expression, and effects of MEG3 overexpression on U251 cells were ameliorated by Sirt7 silence. MEG3 suppressed cell proliferation and migration but promoted autophagy in U251 cells through positively regulating Sirt7, involving in the inhibition of the PI3K/AKT/mTOR pathway.  相似文献   

3.
The PI3K signaling pathway is activated in a broad spectrum of human cancers, either directly by genetic mutation or indirectly via activation of receptor tyrosine kinases or inactivation of the PTEN tumor suppressor. The key nodes of this pathway have emerged as important therapeutic targets for the treatment of cancer. In this study, we show that (−)-epigallocatechin-3-gallate (EGCG), a major component of green tea, is an ATP-competitive inhibitor of both phosphoinositide-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) with Ki values of 380 and 320 nM respectively. The potency of EGCG against PI3K and mTOR is within physiologically relevant concentrations. In addition, EGCG inhibits cell proliferation and AKT phosphorylation at Ser473 in MDA-MB-231 and A549 cells. Molecular docking studies show that EGCG binds well to the PI3K kinase domain active site, agreeing with the finding that EGCG competes for ATP binding. Our results suggest another important molecular mechanism for the anticancer activities of EGCG.  相似文献   

4.
The PI3K/AKT/mTOR pathway plays a key role in the development of the hypervascular tumor renal cell carcinoma (RCC). NVP‐BEZ235 (NVP), a novel dual PI3K/mTOR inhibitor, showed great antitumor benefit and provided a treatment strategy in RCC. In this study, we test the effect of NVP on survival rate, apoptosis and autophagy in the RCC cell line, 786‐0. We also explore the hypothesis that NVP, in combination with autophagy inhibitors, leads to apoptosis enhancement in 786‐0 cells. The results showed that the PI3K/AKT/mTOR pathway proteins p‐AKT and p‐P70S6K were highly expressed in RCC tissue. We also showed that NVP inhibited cell growth and induced apoptosis and autophagy in RCC cells. The combination treatment of NVP with autophagy inhibitors enhanced the effect of NVP on suppressing 786‐0 growth and induction of apoptosis. This study proposes a novel treatment paradigm where combining PI3K/AKT/mTOR pathway inhibitors and autophagy inhibitors lead to enhanced RCC cell apoptosis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Zinc plays an important role in maintaining intestinal barrier function as well as modulating cellular signaling recognition and protein kinase activities. The phosphatidylinositol 3-kinase (PI3K) cascade has been demonstrated to affect intercellular integrity and tight junction (TJ) proteins. The current study investigated the hypothesis that zinc regulates intestinal intercellular junction integrity through the PI3K/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway. A transwell model of Caco-2 cell was incubated with 0, 50 and 100 μM of zinc at various time points. Transepithelial electrical resistance (TEER), paracellular permeability, TJ proteins, cell proliferation, differentiation and cell damage were measured. Compared with controls, 50 and 100 μM of zinc increased cell growth at 6, 12 and 24 h and the expression of proliferating cell nuclear antigen at 24 h. Zinc (100 μM) significantly elevated TEER at 6–24 h and reduced TJ permeability at 24 h, accompanied by the up-regulation of alkaline phosphatase (AP) activity and zonula occludens (ZO)-1 expression. In addition, zinc (100 μM) affected the PI3K/AKT/mTOR pathway by stimulating phosphorylation of AKT and the downstream target mTOR. Inhibition of PI3K signaling by LY294002 counteracted zinc promotion, as shown by a decrease in AP activity, TEER, the abundance of ZO-1 and phosphorylation of AKT and mTOR. Additionally, TJ permeability and the expression of caspase-3 and LC3II (markers of cell damage) were increased by addition of PI3K inhibitor. In conclusion, the activation of PI3K/AKT/mTOR signaling by zinc is involved in improving intestinal barrier function by enhancing cell differentiation and expression of TJ protein ZO-1.  相似文献   

6.
Apigetrin is a flavonoid glycoside phytonutrient derived from fruits and vegetables that is well known for a variety of biological activities such as antioxidant and anti-inflammatory activities. In the current study, we determined the effect of apigetrin on AGS gastric cancer cell. Apigetrin reduced cancer cell proliferation and induced G2/M phase cell cycle arrest by regulating cyclin B1, cdc25c and cdk1 protein expression in AGS cell. Apigetrin treatment caused apoptotic cell death in AGS cells, characterized by the accumulation of apoptosis portion, cleavage of caspase-3 and poly ADP-ribose polymerase (PARP). Apigetrin-treated cells increased the expression of extrinsic apoptosis pathway proteins and mRNA. However, intrinsic apoptosis pathway related proteins were not altered. In addition, AGS cells treated with apigetrin increased autophagic cell death, featured by the formation of autophagic vacuole and acidic vesicular organelles. Autophagy marker proteins, such as LC3B-II and beclin-1, were increased, and p62, an autophagy flux marker protein, was also increased by endoplasmic reticulum stress. Also, the phosphorylation of PI3K/AKT/mTOR pathway proteins and its downstream targets in apigetrin-treated AGS cells was identified to be decreased. Taken together, these data suggest that apigetrin-treated AGS cells induced G2/M phase cell cycle arrest, extrinsic apoptosis and autophagic cell death through PI3K/AKT/mTOR pathway, which can lead to the inhibition of gastric cancer development. Thus, our findings strongly indicate that apigetrin is a basic natural derived compound that could be used as a nutrient source with potential anticancer activities against gastric cancer.  相似文献   

7.
Mollugin, a bioactive phytochemical isolated from Rubia cordifolia L., has shown preclinical anticancer efficacy in various cancer models. However the effects of mollugin in regulating cancer cell survival and death remains undefined. In the present study we found that mollugin exhibited cytotoxicity on various cancer models. The suppression of cell viability was due to the induction of mitochondria apoptosis. In addition, the presence of autophagic hallmarks was observed in mollugin-treated cells. Notably, blockade of autophagy by a chemical inhibitor or RNA interference enhanced the cytotoxicity of mollugin. Further experiments demonstrated that phosphatidylinositide 3-kinases/protein kinase B/mammalian target of rapamycin/p70S6 kinase (PI3K/AKT/mTOR/p70S6K) and extracellular regulated protein kinases (ERK) signaling pathways participated in mollugin-induced autophagy and apoptosis. Together, these findings support further studies of mollugin as candidate for treatment of human cancer cells.  相似文献   

8.
During glucose deprivation (GD)-induced cellular stress, the molecular chaperone glucose-regulated protein 75 (Grp75)/Mortalin/PBP74/mtHSP70 (hereafter termed “Grp75”) plays an important role in the suppression of apoptosis by inhibiting the Bax conformational change that delays the release of cytochrome c. The molecular pathways by which it carries out these functions are still unclear. We hypothesize that the anti-apoptotic effect by the overexpression of Grp75 was through the signal of AKT activated by classic phosphoinositide 3-kinase (PI3K) and also involved PI3K-independent pathways. Using the PC12 cell GD model, we demonstrated a novel mechanism of Grp75 activating AKT, which may be PI3K independent and associated with Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK signaling. The PI3K inhibitor LY294002 did not influence the activation of AKT by the Grp75 overexpression under GD; however, the MEK inhibitor U0126 dramatically inhibited AKT phosphorylation in the same assay. In addition to the PI3K/AKT signal pathway, Grp75 overexpression also inhibited the Bax conformational change through the Raf/MEK/ERK signal pathway. In conclusion, Grp75 overexpression in activating AKT can be PI3K independent and associated with Raf/MEK/ERK signaling under GD. At the same time, PI3K may also crosstalk with Raf-1, in which the prosurvival signal of PI3K maintains the expression of Raf-1. The activated AKT and extracellular signal-regulated protein kinases 1 and 2 by Grp75 inhibited the Bax conformational change and subsequent apoptosis.  相似文献   

9.
Phosphatidylinositide 3-kinase/AKT in radiation responses   总被引:2,自引:0,他引:2  
  相似文献   

10.
The fragment of 2-substituted-3-sulfonylaminobenzamide has been proposed to replace the fragment of 2-substituted-3-sulfonylaminopyridine in PI3K and mTOR dual inhibitors to design novel anticancer agents based on bioisostere. The combination of the fragment of 2-substituted-3-sulfonylaminobenzamide with the fragment of 2-aminobenzothiazole or 2-aminothiazolo[5,4-b]pyridine, or 2-amino[1,2,4]triazolo[1,5-a]pyridine produced the novel structures of anticancer agents. As a result, nineteen target compounds were synthesized and characterized. Their antiproliferative activities in vitro were evaluated via MTT assay against four human cancer cell lines including HCT-116, A549, MCF-7 and U-87 MG. The SAR of target compounds was preliminarily discussed. Compound 1g with potent antiproliferative activity was examined for its effect on the AKT and p-AKT473. The anticancer effect of 1g was evaluated in established nude mice HCT-116 xenograft model. The results suggested that compound 1g can block PI3K/AKT/mTOR pathway and significantly inhibit tumor growth. These findings strongly support our assumption that the fragment of benzamide can replace the pyridine ring in some PI3K and mTOR dual inhibitor to design novel anticancer agents.  相似文献   

11.
Coxsackievirus B3 (CVB3) is a common human pathogen for acute myocarditis, pancreatitis, non-septic meningitis, and encephalitis; it induces a direct cytopathic effect (CPE) and apoptosis on infected cells. The Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT/PKB)/mammalian target of Rapamycin (mTOR) signaling pathway regulates several cellular processes and it is one of the most important pathways in human networks. However, the effect and mechanism of PI3K/AKT/mTOR signaling pathway in CVB3 infected cells are poorly understood. In this study, we demonstrate that inhibition of PI3K/AKT/mTOR signaling pathway increased CVB3-induced CPE and apoptosis in HeLa cells. The activity of downstream targets of PI3K and mTOR is attenuated after CVB3 infection and inhibitors of PI3K and mTOR made their activity to decrease more significantly. We further show that LY294002 and Rapamycin, the inhibitor of PI3K and mTOR respectively, promote CVB3-induced CPE and apoptosis. Taken together, these data illustrate a new and imperative role for PI3K/AKT/mTOR signaling in CVB3 infection in HeLa cells and suggest an useful approach for the therapy of CVB3 infection.  相似文献   

12.
《Cellular signalling》2014,26(12):2782-2792
Angiogenin (ANG), a member of RNase A superfamily, is the only angiogenic factor that possesses ribonucleolytic activity. Recent studies showed that the expression of ANG was elevated in various types of cancers. Accumulating evidence indicates that ANG plays an essential role in cancer progression by stimulating both cancer cell proliferation and tumor angiogenesis. Human ribonuclease inhibitor (RI), a cytoplasmic protein, is constructed almost entirely of leucine rich repeats (LRRs), which are present in a large family of proteins that are distinguished by their display of vast surface areas to foster protein–protein interactions. RI might be involved in unknown biological effects except inhibiting RNase A activity. The experiment demonstrated that RI also could suppress activity of angiogenin (ANG) through closely combining with it in vitro. PI3K/AKT/mTOR signaling pathway exerts a key role in cell growth, survival, proliferation, apoptosis and angiogenesis. We recently reported that up-regulating RI inhibited the growth and induced apoptosis of murine melanoma cells through repression of angiogenin and PI3K/AKT signaling pathway. However, ANG receptors have not yet been identified to date, its related signal transduction pathways are not fully clear and underlying interacting mechanisms between RI and ANG remain largely unknown. Therefore, we hypothesize that RI might combine with intracellular ANG to block its nuclear translocation and regulate PI3K/AKT/mTOR signaling pathway to inhibit biological functions of ANG. Here, we reported for the first time that ANG could interact with RI endogenously and exogenously by using co-immunoprecipitation (Co-IP) and GST pull-down. Furthermore, we observed the colocalization of ANG and RI in cells with immunofluorescence staining under laser confocal microscope. Moreover, through fluorescence resonance energy transfer (FRET) assay, we further confirmed that these two proteins have a physical interaction in living cells. Subsequently, we demonstrated that up-regulating ANG including ANG His37Ala mutant obviously decreased RI expression and activated phosphorylation of key downstream target molecules of PI3K/AKT/mTOR signaling pathway. Finally, up-regulating ANG led to the promotion of tumor angiogenesis, tumorigenesis and metastasis in vivo. Taken together, our data provided a novel mechanism of ANG in regulating PI3K/AKT/mTOR signaling pathway via RI, which suggested a new therapeutic target for cancer therapy.  相似文献   

13.
Cervical cancer continues to be among the most frequent gynaecologic cancers worldwide. The phosphoinositide 3‐kinase (PI3K)/protein kinase B (AKT) pathway is constitutively activated in cervical cancer. Inositol polyphosphate 4‐phosphatase type II (INPP4B) is a phosphoinositide phosphatase and considered a negative regulatory factor of the PI3K/AKT pathway. INPP4B has diverse roles in various tumours, but its role in cervical cancer is largely unknown. In this study, we investigated the role of INPP4B in cervical cancer. Overexpression of INPP4B in HeLa, SiHa and C33a cells inhibited cell proliferation, metastasis and invasiveness in CCK‐8, colony formation, anchorage‐independent growth in soft agar and Transwell assay. INPP4B reduced the expression of some essential proteins in the PI3K/AKT/SGK3 pathway including p‐AKT, p‐SGK3, p‐mTOR, phospho‐p70S6K and PDK1. In addition, overexpression of INPP4B decreased xenograft tumour growth in nude mice. Loss of INPP4B protein expression was found in more than 60% of human cervical carcinoma samples. In conclusion, INPP4B impedes the proliferation and invasiveness of cervical cancer cells by inhibiting the activation of two downstream molecules of the PI3K pathway, AKT and SGK3. INPP4B acts as a tumour suppressor in cervical cancer cells.  相似文献   

14.
哺乳动物雷帕霉素靶(mTOR)和蛋白激酶B(Akt/PKB)与肿瘤发生的密切关系已被广泛地认可.mTOR是一种丝/苏氨酸激酶,可以通过影响mRNA转录、代谢、自噬等方式调控细胞的生长.它既是PI3K的效应分子,也可以是PI3K的反馈调控因子.mTORC1 和mTORC2是mTOR的两种不同复合物. 对雷帕霉素敏感的mTORC1受到营养、生长因子、能量和应激4种因素的影响.生长因子通过PI3K/Akt信号通路调控mTORC1是最具特征性调节路径.而mTORC2最为人熟知的是作为Akt473磷酸化位点的上游激酶. 同样,Akt/PKB在细胞增殖分化、迁移生长过程中发挥着重要作用. 随着Thr308和Ser473两个位点激活,Akt/PKB也得以全面活化.因此,mTORC2-Akt-mTORC1的信号通路在肿瘤形成和生长中是可以存在的.目前临床肿瘤治疗中,PI3K/Akt/mTOR是重要的靶向治疗信号通路.然而,仅抑制mTORC1活性,不是所有的肿瘤都能得到预期控制.雷帕霉素虽然能抑制mTORC1,但也能反馈性地增加PI3K信号活跃度,从而影响治疗预后.近来发现的第二代抑制剂可以同时抑制mTORC1/2和PI3K活性,这种抑制剂被认为在肿瘤治疗上颇具前景.本综述着重阐述了PI3K/Akt/mTOR信号通路的传导、各因子之间的相互调控以及相关抑制剂的发展.  相似文献   

15.
Cervical cancer is common cancer among women with high morbidity. MicroRNAs (miRs) are involved in the progression and development of cervical cancer. This study aimed to explore the effect of miR-99b-5p (miR-99b) on invasion and migration in cervical cancer through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway. The microarray-based analysis was used to screen out differentially expressed miRNAs. Expression of miR-99b, PI3K, AKT, mTOR, and ribosomal protein S6 kinase (p70S6K) was determined in both cervical cancer tissues and paracancerous tissues. Next, alteration of miR-99b expression in cervical cancer was conducted to evaluate levels of PI3K, AKT, mTOR, p70S6K matrix metallopeptidase 2, epithelial cell adhesion molecule, and intercellular adhesion molecule 1, as well as the effect of miR-99b on cell proliferation, invasion, migration, cell cycle distribution, and apoptosis. The results demonstrated that miR-99b expression was decreased and levels of PI3K, AKT, mTOR, and p70S6K were elevated in cervical cancer tissues. More important, overexpressed miR-99b repressed the PI3K/AKT/mTOR signaling pathway, inhibited cell proliferation, invasion, and migration, blocked cell cycle entry, and promoted apoptosis in cervical cancer. These results indicate that miR-99b attenuates the migration and invasion of human cervical cancer cells through downregulation of the PI3K/AKT/mTOR signaling pathway, which provides a therapeutic approach for cervical cancer treatment.  相似文献   

16.
Choriocarcinoma (CC) is a trophoblast tumor prone to early distant organ metastases. At present, the main treatment for CC is chemotherapy, but chemotherapy resistance readily occurs and leads to treatment failure. H19 is a long noncoding RNA, and its abnormal expression has been found in various tumors, including CC. H19 is also considered to be related to the drug resistance mechanism of the same cancers. To investigate the role of H19 in drug-resistant CC cells, the following experiments were designed. We used human CC cell line JEG-3 to establish cell lines resistant to methotrexate and 5-fluorouracil (JEG-3/MTX and JEG-3/5-FU) and detected the expression of H19 in JEG-3, JEG-3/MTX, JEG-3/5-FU cells, JEG-3 with MTX, and JEG-3 with 5-FU. We found that the expression of H19 in the JEG-3/MTX and JEG-3/5-FU cells were significantly higher than that in JEG-3 cells. JEG-3 cells were treated with MTX or 5-FU for and quantitative real-time polymerase chain reaction assay revealed that H19 messenger RNA expression increased. Furthermore, after H19 was knocked out, the drug resistance index of the JEG-3/MTX and JEG-3/5-FU cells decreased; the proliferation, migration, and invasion ability diminished significantly; and apoptosis increased significantly. Finally, we detected the total and phosphorylation protein expression of phosphatidylinositol-3-kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) in the JEG-3/MTX and JEG-3/5-FU cells. The total protein of PI3K, AKT, and mTOR in the H19 knockout resistant cells showed no significant change relative to those in the H19 non-knockout resistant cells, whereas the phosphorylated proteins of PI3K, AKT, and mTOR were significantly decreased. Phosphorylated proteins of PI3K, AKT, and mTOR in the JEG-3/MTX and JEG-3/5-FU cells were significantly higher than that in JEG-3 cells. After using inhibition of phosphorylated PI3K/AKT/mTOR, the proliferation, migration, and invasion ability of the JEG-3/MTX and JEG-3/5-FU cells diminished significantly; and apoptosis increased significantly. On the basis of the above experiments, we concluded that H19 is related to the drug resistance of CC, and the knockout of H19 can reduce the drug resistance of resistant CC cells; and decrease the proliferative, migratory, and invasive ability; and increase the apoptosis. PI3K/AKT/mTOR pathway might be involved in H19-mediated effects. H19 is expected to be a therapeutic target for the treatment of drug-resistant chorionic carcinoma.  相似文献   

17.
A series of novel derivatives of isaindigotone, which comes from the root of isaits indinatca Fort, were synthesised (Compound 1–26). Four human gastrointestinal cancer cells (HCT116, PANC-1, SMMC-7721, and AGS) were employed to evaluate the anti-proliferative activity. Among them, Compound 6 displayed the most effective inhibitory activity on AGS cells with an IC50 (50% inhibitory concentration) value of 2.2 μM. The potential mechanism study suggested that Compound 6 induced apoptosis in AGS cells. The collapse of mitochondrial membrane potential (MMP) in AGS cells was proved. In docking analysis, good affinity interaction between Compound 6 and AKT1 was discovered. Treatment of AGS cells with Compound 6 also resulted in significant suppression of PI3K/AKT/mTOR signal pathway. The collapse of MMP and suppression of PI3K/AKT/mTOR signal pathway may be responsible for induction of apoptosis. This derivative Compound 6 could be useful as an underlying anti-tumour agent for treatment of gastric cancer.  相似文献   

18.
《Cellular signalling》2014,26(12):2694-2701
Disruption of autophagy plays an import role in neurodegenerative disorders, where deficient elimination of abnormal and toxic protein aggregates promotes cellular stress, failure and death. Therefore, induction of autophagy has been proposed as a reasonable strategy to help neurons clear abnormal protein aggregates and survive. The kinase mammalian target of rapamycin (mTOR) is a major regulator of the autophagic process and is regulated by starvation, growth factors, and cellular stressors. Upstream of mTOR the survival PI3K/AKT pathway modulates mTOR activity that is also altered in neurodegenerative diseases of Alzheimer and Parkinson. Nevertheless, the interplay between the PI3K/AKT/mTOR pathway and the autophagic process is complex and a more detailed examination of tissue from patients suffering neurodegenerative diseases and of animal and cellular models is needed. In the present work we review the recent findings on the role of the PI3K/AKT/mTOR pathway in the modulation of the autophagic process in neuronal protection.  相似文献   

19.
The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT)/mammalian target of rapamycin (mTOR) pathway conveys signals from receptor tyrosine kinases (RTKs) to regulate cell metabolism, proliferation, survival, and motility. Previously we found that prolylcarboxypeptidase (PRCP) regulate proliferation and survival in breast cancer cells. In this study, we found that PRCP and the related family member prolylendopeptidase (PREP) are essential for proliferation and survival of pancreatic cancer cells. Depletion/inhibition of PRCP and PREP-induced serine phosphorylation and degradation of IRS-1, leading to inactivation of the cellular PI3K and AKT. Notably, depletion/inhibition of PRCP/PREP destabilized IRS-1 in the cells treated with rapamycin, blocking the feedback activation PI3K/AKT. Consequently, inhibition of PRCP/PREP enhanced rapamycin-induced cytotoxicity. Thus, we have identified PRCP and PREP as a stabilizer of IRS-1 which is critical for PI3K/AKT/mTOR signaling in pancreatic cancer cells.  相似文献   

20.
《Phytomedicine》2015,22(1):120-127
Wortmannin is a cytotoxic compound derived from the endophytic fungi Fusarium oxysporum, Penicillium wortmannii and Penicillium funiculosum that occurs in many plants, including medicinal herbs. The rationale to develop novel anticancer drugs is the frequent development of tumor resistance to the existing antineoplasic agents. Therefore, it is mandatory to analyze resistance mechanisms of novel drug candidates such as wortmannin as well to bring effective drugs into the clinic that have the potential to bypass or overcome resistance to established drugs and to substantially increase life span of cancer patients. In the present project, we found that P-glycoprotein-overexpressing tumor cells displaying the classical multidrug resistance phenotype toward standard anticancer drugs were not cross-resistant to wortmannin. Furthermore, three point-mutated PIK3CA protein structures revealed similar binding energies to wortmannin than wild-type PIK3CA. This protein is the primary target of wortmannin and part of the PI3K/AKT/mTOR signaling pathway. PIK3CA mutations are known to be associated with worse response to therapy and shortened its activity toward wild-type and mutant PIK3CA with similar efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号