首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellular senescence, a state of growth arrest, is involved in various age‐related diseases. We previously found that carnitine palmitoyltransferase 1C (CPT1C) is a key regulator of cancer cell proliferation and senescence, but it is unclear whether CPT1C plays a similar role in normal cells. Therefore, this study aimed to investigate the role of CPT1C in cellular proliferation and senescence of human embryonic lung MRC‐5 fibroblasts and the involved mechanisms. The results showed that CPT1C could reverse the cellular senescence of MRC‐5 fibroblasts, as evidenced by reduced senescence‐associated β‐galactosidase activity, downregulated messenger RNA (mRNA) expression of senescence‐associated secretory phenotype factors, and enhanced bromodeoxyuridine incorporation. Lipidomics analysis further revealed that CPT1C gain‐of‐function reduced lipid accumulation and reversed abnormal metabolic reprogramming of lipids in late MRC‐5 cells. Oil Red O staining and Nile red fluorescence also indicated significant reduction of lipid accumulation after CPT1C gain‐of‐function. Consequently, CPT1C gain‐of‐function significantly reversed mitochondrial dysfunction, as evaluated by increased adenosine triphosphate synthesis and mitochondrial transmembrane potential, decreased radical oxygen species, upregulated respiratory capacity and mRNA expression of genes related to mitochondrial function. In summary, CPT1C plays a vital role in MRC‐5 cellular proliferation and can reverse MRC‐5 cellular senescence through the regulation of lipid metabolism and mitochondrial function, which supports the role of CPT1C as a novel target for intervention into cellular proliferation and senescence and suggests CPT1C as a new strategy for antiaging.  相似文献   

2.
p21活化激酶5(p21-activated kinase 5,PAK5)是一种丝氨酸/苏氨酸激酶,调节多种细胞进程,包括细胞骨架重构、细胞增殖、迁移和侵袭.研究表明,PAK5是调控乳腺癌进程的关键因子,但与衰老关系的研究尚未见报道.本研究利用CRISPR/Cas9慢病毒感染方法,构建敲低PAK5的人乳腺癌MDA-MB...  相似文献   

3.
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a pivotal glycolytic enzyme, and a signaling molecule which acts at the interface between stress factors and the cellular apoptotic machinery. Earlier, we found that knockdown of GAPDH in human carcinoma cell lines resulted in cell proliferation arrest and chemoresistance to S phase-specific cytotoxic agents. To elucidate the mechanism by which GAPDH depletion arrests cell proliferation, we examined the effect of GAPDH knockdown on human carcinoma cells A549. Our results show that GAPDH-depleted cells establish senescence phenotype, as revealed by proliferation arrest, changes in morphology, SA-β-galactosidase staining, and more than 2-fold up-regulation of senescence-associated genes DEC1 and GLB1. Accelerated senescence following GAPDH depletion results from compromised glycolysis and energy crisis leading to the sustained AMPK activation via phosphorylation of α subunit at Thr172. Our findings demonstrate that GAPDH depletion switches human tumor cells to senescent phenotype via AMPK network, in the absence of DNA damage. Rescue experiments using metabolic and genetic models confirmed that GAPDH has important regulatory functions linking the energy metabolism and the cell cycle networks. Induction of senescence in LKB1-deficient non-small cell lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation.  相似文献   

4.
Cellular senescence acts as a barrier to cancer progression, and microRNAs (miRNAs) are thought to be potential senescence regulators. However, whether senescence-associated miRNAs (SA-miRNAs) contribute to tumor suppression remains unknown. Here, we report that miR-22, a novel SA-miRNA, has an impact on tumorigenesis. miR-22 is up-regulated in human senescent fibroblasts and epithelial cells but down-regulated in various cancer cell lines. miR-22 overexpression induces growth suppression and acquisition of a senescent phenotype in human normal and cancer cells. miR-22 knockdown in presenescent fibroblasts decreased cell size, and cells became more compact. miR-22-induced senescence also decreases cell motility and inhibits cell invasion in vitro. Synthetic miR-22 delivery suppresses tumor growth and metastasis in vivo by inducing cellular senescence in a mouse model of breast carcinoma. We confirmed that CDK6, SIRT1, and Sp1, genes involved in the senescence program, are direct targets of miR-22. Our study provides the first evidence that miR-22 restores the cellular senescence program in cancer cells and acts as a tumor suppressor.  相似文献   

5.
6.
Senescence is an antiproliferative mechanism that can suppress tumor development and can be induced by oncogenes such as genes of the Ras family. Although studies have implicated bioactive sphingolipids (SL) in senescence, the specific mechanisms remain unclear. Here, using MCF10A mammary epithelial cells, we demonstrate that oncogenic K-Ras (Kirsten rat sarcoma viral oncogene homolog) is sufficient to induce cell transformation as well as cell senescence—as revealed by increases in the percentage of cells in the G1 phase of the cell cycle, p21WAF1/Cip1/CDKN1A (p21) expression, and senescence-associated β-galactosidase activity (SA-β-gal). Furthermore, oncogenic K-Ras altered SL metabolism, with an increase of long-chain (LC) C18, C20 ceramides (Cer), and very-long-chain (VLC) C22:1, C24 Cer, and an increase of sphingosine kinase 1 (SK1) expression. Since Cer and sphingosine-1-phosphate have been shown to exert opposite effects on cellular senescence, we hypothesized that targeting SK1 could enhance oncogenic K-Ras-induced senescence. Indeed, SK1 downregulation or inhibition enhanced p21 expression and SA-β-gal in cells expressing oncogenic K-Ras and impeded cell growth. Moreover, SK1 knockdown further increased LC and VLC Cer species (C18, C20, C22:1, C24, C24:1, C26:1), especially the ones increased by oncogenic K-Ras. Fumonisin B1 (FB1), an inhibitor of ceramide synthases (CerS), reduced p21 expression induced by oncogenic K-Ras both with and without SK1 knockdown. Functionally, FB1 reversed the growth defect induced by oncogenic K-Ras, confirming the importance of Cer generation in the senescent phenotype. More specifically, downregulation of CerS2 by siRNA blocked the increase of VLC Cer (C24, C24:1, and C26:1) induced by SK1 knockdown and phenocopied the effects of FB1 on p21 expression. Taken together, these data show that targeting SK1 is a potential therapeutic strategy in cancer, enhancing oncogene-induced senescence through an increase of VLC Cer downstream of CerS2.Subject terms: Cancer metabolism, Senescence  相似文献   

7.
The number and morphology of mitochondria within a cell are precisely regulated by the mitochondrial fission and fusion machinery. The human protein, hFis1, participates in mitochondrial fission by recruiting the Drp1 into the mitochondria. Using short hairpin RNA, we reduced the expression levels of hFis1 in mammalian cells. Cells lacking hFis1 showed sustained elongation of mitochondria and underwent significant cellular morphological changes, including enlargement, flattening, and increased cellular granularity. In these cells, staining for acidic senescence-associated beta-galactosidase activity was elevated, and the rate of cell proliferation was greatly reduced, indicating that cells lacking hFis1 undergo senescence-associated phenotypic changes. Reintroduction of the hFis1 gene into hFis1-depleted cells restored mitochondrial fragmentation and suppressed senescence-associated beta-galactosidase activity. Moreover, depletion of both hFis1 and OPA1, a critical component of mitochondrial fusion, resulted in extensive mitochondrial fragmentation and markedly rescued cells from senescence-associated phenotypic changes. Intriguingly, sustained elongation of mitochondria was associated with decreased mitochondrial membrane potential, increased reactive oxygen species production, and DNA damage. The data indicate that sustained mitochondrial elongation induces senescence-associated phenotypic changes that can be neutralized by mitochondrial fragmentation. Thus, one of the key functions of mitochondrial fission might be prevention of the sustained extensive mitochondrial elongation that triggers cellular senescence.  相似文献   

8.
9.
泛素偶联酶2C与多种肿瘤细胞的增殖密切相关,但其与肺癌发生和发展的关系尚不明确。 本研究以肺癌A549细胞为材料,通过RT-PCR、Western印迹、免疫荧光、SA-β-Gal细胞衰老染色、细胞划痕和Trans-well实验,阐明UBE2C与肺癌细胞的增殖、衰老和迁移能力的关系。结果显示,UBE2C在肺癌细胞中的表达明显高于正常细胞。利用基因修饰技术瞬时过表达或靶向沉默UBE2C后,在肺癌A549细胞中,UBE2C的mRNA和蛋白质水平显著增加3.5倍或减少0.5倍,显著促进或抑制细胞增殖,进而减少或增加细胞的凋亡率。过表达UBE2C后,显著抑制细胞衰老;但沉默UBE2C后,则增加细胞衰老。此外,过表达UBE2C后,下调转移相关基因E-钙黏着蛋白的mRNA和蛋白质表达水平,且上调波形蛋白基因的表达水平,进而促进肺癌细胞的迁移。但靶向敲除UBE2C后,上调E-钙黏着蛋白,同时下调波形蛋白表达水平,进而抑制肺癌细胞的迁移。本研究的开展将明确UBE2C在肺癌中的作用及其机制,为以UBE2C为靶点,提高病人生存期提供了理论基础。  相似文献   

10.
11.
12.
HuR, a RNA binding protein, is known to function as a tumor maintenance gene in breast cancer and associated with tumor growth and poor prognosis. However, the cellular function of this protein remains largely unknown in normal mammary epithelial cells. Here, we showed that in immortalized MCF10A mammary epithelial cells, HuR knockdown inhibits cell proliferation and enhances premature senescence. We also showed that in three-dimensional culture, MCF10A cells with HuR knockdown form abnormal acini with filled lumen and an aberrant expression pattern of the extracellular matrix protein laminin V. In addition, we showed that HuR knockdown increases ΔNp63, but decreases wild-type p53, expression in MCF10A cells. Moreover, we showed that ΔNp63 knockdown partially rescues the proliferative defect induced by HuR knockdown in MCF10A cells. Consistent with this, we identified two U-rich elements in the 3′-untranslated region of p63 mRNA, to which HuR specifically binds. Finally, we showed that HuR knockdown enhances ΔNp63 mRNA translation but has no effect on p63 mRNA turnover. Together, our data suggest that HuR maintains cell proliferation and polarity of mammary epithelial cells at least in part via ΔNp63.  相似文献   

13.
A novel target of NESH-SH3 (TARSH) was identified as a cellular senescence related gene in mouse embryonic fibroblasts (MEFs) replicative senescence, the expression of which has been suppressed in primary clinical lung cancer specimens. However, the molecular mechanism underlying the regulation of TARSH involved in pulmonary tumorigenesis remains unclear. Here we demonstrate that the reduction of TARSH gene expression by short hairpin RNA (shRNA) system robustly inhibited the MEFs proliferation with increase in senescence-associated β-galactosidase (SA-β-gal) activity. Using p53−/− MEFs, we further suggest that this growth arrest by loss of TARSH is evoked by p53-dependent p21Cip1 accumulation. Moreover, we also reveal that TARSH reduction induces multicentrosome in MEFs, which is linked in chromosome instability and tumor development. These results suggest that TARSH plays an important role in proliferation of replicative senescence and may serve as a trigger of tumor development.  相似文献   

14.
15.
16.
To test the cellular response to an increased fatty acid oxidation, we generated a vector for an inducible expression of the rate-limiting enzyme carnitine palmitoyl-transferase 1alpha (CPT1alpha). Human embryonic 293T kidney cells were transiently transfected and expression of the CPT1alpha transgene in the tet-on vector was activated with doxycycline. Fatty acid oxidation was measured by determining the conversion of supplemented, synthetic cis-10-heptadecenoic acid (C17:1n-7) to C15:ln-7. CPT1alpha over-expression increased mitochondrial long-chain fatty acid oxidation about 6-fold. Addition of palmitic acid (PA) decreased viability of CPT1alpha over-expressing cells in a concentration-dependent manner. Both, PA and CPT1alpha over-expression increased cell death. Interestingly, PA reduced total cell number only in cells over-expressing CPT1alpha, suggesting an effect on cell proliferation that requires PA translocation across the mitochondrial inner membrane. This inducible expression system should be well suited to study the roles of CPT1 and fatty acid oxidation in lipotoxicity and metabolism in vivo.  相似文献   

17.

Background

During evolution, organisms with renewable tissues have developed mechanisms to prevent tumorigenesis, including cellular senescence and apoptosis. Cellular senescence is characterized by a permanent cell cycle arrest triggered by both endogenous stress and exogenous stress. The p19INK4d, a member of the family of cyclin-dependent kinase inhibitors (INK4), plays an important role on cell cycle regulation and in the cellular DNA damage response. We hypothesize that p19INK4d is a potential factor involved in the onset and/or maintenance of the senescent state.

Methods

Senescence was confirmed by measuring the cell cycle arrest and the senescence-associated β-galactosidase activity. Changes in p19INK4d expression and localization during senescence were determined by Western blot and immunofluorescence assays. Chromatin condensation was measured by microccocal nuclease digestion and histone salt extraction.

Results

The data presented here show for the first time that p19INK4d expression is up-regulated by different types of senescence. Changes in senescence-associated hallmarks were driven by modulation of p19 expression indicating a direct link between p19INK4d induction and the establishment of cellular senescence. Following a senescence stimulus, p19INK4d translocates to the nucleus and tightly associates with chromatin. Moreover, reduced levels of p19INK4d impair senescence-related global genomic heterochromatinization. Analysis of p19INK4d mRNA and protein levels in tissues from differently aged mice revealed an up-regulation of p19INK4d that correlates with age.

Conclusion

We propose that p19INK4d participates in the cellular mechanisms that trigger senescence by contributing to chromatin compaction.

General significance

This study provides novel insights into the dynamics process of cellular senescence, a central tumor suppressive mechanism.  相似文献   

18.
Complement 1q-binding protein (C1qbp) is a mitochondrial protein reported to be upregulated in cancer. However, whether C1qbp plays a tumor suppressive or tumorigenic role in the progression of cancer is controversial. Moreover, the exact effects of C1qbp on cell proliferation, migration and death/survival have not been definitely proven. To this end, we comprehensively examined the effects of C1qbp on mitochondrial-dependent cell death, proliferation and migration in both normal and breast cancer cells using genetic gain- and loss-of-function approaches. In normal fibroblasts, overexpression of C1qbp protected the cells against staurosporine-induce apoptosis, increased proliferation, decreased cellular ATP and increased cell migration in a wound-healing assay. In contrast, the opposite effects were observed in fibroblasts depleted of C1qbp by RNA interference. C1qbp expression was found to be markedly elevated in 4 different human breast cancer cell lines as well as in ductal and adenocarcinoma tumors from breast cancer patients. Stable knockdown of C1qbp by shRNA in the aggressive MDA-MB-231 breast cancer cell line greatly reduced cell proliferation, increased ATP levels and decreased cell migration compared with control shRNA-transfected cells. Moreover, C1qbp knockdown elicited a significant increase in doxorubicin-induced apoptosis in the MDA-MB-231 cells. Finally, C1qbp upregulation was not restricted to breast cancer cells and tumors, as levels of C1qbp were also found to be significantly elevated in both human lung and colon cancer cell lines and carcinomas. Together, these results establish a pro-tumor, rather than antitumor, role for C1qbp and indicate that C1qbp could serve as a molecular target for cancer therapeutics.Key words: mitochondria, cell proliferation, cell migration, cell death, tumor cells  相似文献   

19.
应激诱导的细胞早衰与复制性细胞衰老有相似的细胞表型,但其机制不尽相同.分析二者的衰老相关基因表达特点对了解应激因素诱导细胞衰老的机制有重要意义. 本文对过氧化氢诱导的HeLa细胞早衰过程中的关键衰老相关基因及其转录后调控因子的表达做了分析.结果发现,在复制性衰老过程中明显降低的cyclin A、cyclin B1、c-fos及HuR,在温和过氧化氢诱导的细胞早衰过程中并无明显改变;在氧化应激诱导的细胞早衰过程中,p21与p16表达升高,AUF1则降低,与复制性衰老过程一致;p21 mRNA半衰期在复制性衰老过程中无明显变化,但在氧化应激诱导的细胞早衰过程中则显著延长.上述结果提示,尽管氧化应激诱导的细胞早衰与复制性衰老存在相似基因表达变化,调控机制则不尽相同.  相似文献   

20.
Transforming growth factor β1 (TGF β1) induces Mv1Lu cell senescence by persistently producing mitochondrial reactive oxygen species (ROS) through decreased complex IV activity. Here, we investigated the molecular mechanism underlying the effect of TGF β1 on mitochondrial complex IV activity. TGF β1 progressively phosphorylated the negative regulatory sites of both glycogen synthase kinase 3 (GSK3) α and β, corresponding well to the intracellular ROS generation profile. Pre-treatment of N-acetyl cysteine, an antioxidant, did not alter this GSK3 phosphorylation (inactivation), whereas pharmacological inhibition of GSK3 by SB415286 significantly increased mitochondrial ROS, implying that GSK3 phosphorylation is an upstream event of the ROS generation. GSK3 inhibition by SB415286 decreased complex IV activity and cellular O(2) consumption rate and eventually induced senescence of Mv1Lu cell. Similar results were obtained with siRNA-mediated knockdown of GSK3. Moreover, we found that GSK3 not only exists in cytosol but also in mitochondria of Mv1Lu cell and the mitochondrial GSK3 binds complex IV subunit 6b which has no electron carrier and is topologically located in the mitochondrial intermembrane space. Involvement of subunit 6b in controlling complex IV activity and overall respiration rate was proved with siRNA-mediated knockdown of subunit 6b. Finally, TGF β1 treatment decreased the binding of the subunit 6b to GSK3 and subunit 6b phosphorylation. Taken together, our results suggest that GSK3 inactivation is importantly involved in TGF β1-induced complex IV defects through decreasing phosphorylation of the subunit 6b, thereby contributing to senescence-associated mitochondrial ROS generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号