首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Altered expression of miRNAs is associated with development and progression of various human cancers by regulating the translation of oncogenes and tumor suppressor genes. In colorectal cancer, these regulators complement the Vogelstein multistep model of pathogenesis and have the potential of becoming a novel class of tumor biomarkers and therapeutic targets. Using quantitative real-time PCR, we measured the expression of 621 mature miRNAs in 40 colorectal cancers and their paired normal tissues and identified 23 significantly deregulated miRNAs. We subsequently evaluated their association with clinical characteristics of the samples and presence of alterations in the molecular markers of colorectal cancer progression. Expression levels of miR-31 were correlated with CA19-9 and miR-18a, miR-21, and miR-31 were associated with mutations in APC gene. To investigate the downstream regulation of the differentially expressed miRNAs identified, we integrated putative mRNA target predictions with the results of a meta-analysis of seven public gene expression datasets of normal and tumor samples of colorectal cancer patients. Many of the colorectal cancer deregulated miRNAs computationally mapped to targets involved in pathways related to progression. Here one promising candidate pair (miR-1 and MET) was studied and functionally validated. We show that miR-1 can have a tumor suppressor function in colorectal cancer by directly downregulating MET oncogene both at RNA and protein level and that reexpression of miR-1 leads to MET-driven reduction of cell proliferation and motility, identifying the miR-1 downmodulation as one of the events that could enhance colorectal cancer progression.  相似文献   

2.
3.
Hepatocellular carcinoma (HCC) is known as one of the major health problems worldwide. Pathological analysis indicated that a variety of risk factors including genetical (i.e., alteration of tumor suppressors and oncogenes) and environmental factors (i.e., viruses) are involved in beginning and development of HCC. The understanding of these risk factors could guide scientists and clinicians to design effective therapeutic options in HCC treatment. Various viruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV) via targeting several cellular and molecular pathways involved in HCC pathogenesis. Among various cellular and molecular targets, microRNAs (miRNAs) have appeared as key players in HCC progression. miRNAs are short noncoding RNAs which could play important roles as oncogenes or tumor suppressors in several malignancies such as HCC. Deregulation of many miRNAs (i.e., miR-222, miR-25, miR-92a, miR-1, let-7f, and miR-21) could be associated with different stages of HCC. Besides miRNAs, exosomes are other particles which are involved in HCC pathogenesis via targeting different cargos, such as DNAs, RNAs, miRNAs, and proteins. In this review, we summarize the current knowledge of the role of miRNAs and exosomes as important players in HCC pathogenesis. Moreover, we highlighted HCV- and HBV-related miRNAs which led to HCC progression.  相似文献   

4.
There is a continued need for investigating the roles of microRNAs (miRNAs) and their targets on the progression of gastric cancer (GC), especially metastasis. Here, we performed an integrated study to identify dysregulated miRNAs critical for GC development and progression. miR-135b was determined as a promising biomarker for GC. The expression level of miR-135b was increased among GC cell lines, patient tumor tissues, serum samples, and correlation with aggravation of the GC patients. The in vitro functional assays demonstrated overexpression of miR-135b promoted cell proliferation, migration and invasion in GC, while miR-135b inhibition led to the opposite results. CAMK2D was found to be the direct target of miR-135b, serving as a tumor suppressor in GC cells. Based on our and public datasets, we confirmed the attenuation of CAMK2D expression in GC tissues. And, the expression levels of miR-135b and CAMK2D were closely associated with prognosis of GC patients. Ectopic expression of miR-135b resulted in the down-regulation of CAMK2D. Additionally, CAMK2D was a prerequisite for miR-135b to promote GC cells proliferation and migration by regulating the EMT process, which was confirmed by the in vivo experiments. Importantly, in vivo injection of miR-135b antagomir significantly repressed the tumor growth and metastasis of xenograft models, which suggested that the miR-135b antagomir were promising for clinical applications. Taken together, these results indicate that miR-135b/CAMK2D axis drives GC progression by EMT process remodeling, suggesting that miR-135b may be utilized as a new therapeutic target and prognostic marker for GC patients.  相似文献   

5.
MicroRNAs (miRNAs) can function as tumor suppressors or oncogene promoters during tumor development. In this study, low levels of expression of miR-196b were detected in patients with chronic myeloid leukemia. Bisulfite genomic sequencing PCR and methylation-specific PCR were used to examine the methylation status of the CpG islands in the miR-196b promoter in K562 cells, patients with leukemia and healthy individuals. The CpG islands showed more methylation in patients with chronic myeloid leukemia compared with healthy individuals (P<0.05), which indicated that low expression of miR-196b may be associated with an increase in the methylation of CpG islands. The dual-luciferase reporter assay system demonstrated that BCR-ABL1 and HOXA9 are the target genes of miR-196b, which was consistent with predictions from bioinformatics software analyses. Further examination of cell function indicated that miR-196b acts to reduce BCR-ABL1 and HOXA9 protein levels, decrease cell proliferation rate and retard the cell cycle. A low level of expression of miR-196b can cause up-regulation of BCR-ABL1 and HOXA9 expression, which leads to the development of chronic myeloid leukemia. MiR-196b may represent an effective target for chronic myeloid leukemia therapy.  相似文献   

6.
Non-small cell lung cancer (NSCLC), which accounts for ~80 % of lung cancer cases, is one of the most common causes for cancer-related death. microRNAs (miRNAs) have been found to play critical roles in the development and progression of NSCLC. miR-27b has recently been reported as a tumor suppressor in several cancers, but its role in NSCLC remains poorly understood. In this study, we found that miR-27b was remarkably decreased in both NSCLC tissues and cell lines. Moreover, overexpression of miR-27b significantly suppressed NSCLC cells proliferation and invasion. LIM kinase 1 (LIMK1), an essential protein for malignant transformation, was found to be a target of miR-27b. Ectopic expression of LIMK1 dramatically dampened mir-27b action of cancer inhibition. Finally, LIMK1 was found to be negatively correlated with miR-27b in NSCLC patients. Our results demonstrated a tumor-suppressive role of miR-27b in NSCLC, suggesting a potential therapeutic target for NSCLC.  相似文献   

7.
Colorectal cancer (CRC) is one of the most common cancers globally. Despite recent advances in therapeutic approaches, this cancer continues to have a poor prognosis, particularly when diagnosed late. 5-Fluorouracil (5-FU) has been commonly prescribed for patients with CRC, but resistance to 5-FU is one of the main reasons for failure in the treatment of this condition. Recently, microRNAs (miRNAs) have been established as a means of modifying the signaling pathways involved in initiation and progression of CRC and their role as oncogene or tumor suppressor have been investigated in various studies. Moreover, miRNAs through various mechanisms play an important role in inducing tumor resistance or sensitivity to anticancer drugs. Detecting and targeting these mechanisms may be a new therapeutic approach. This review summarizes the current knowledge about the potential roles of miRNAs in 5-FU resistance, with particular emphasis on molecular mechanism involved.  相似文献   

8.
9.
Angiogenesis is a critical event in the development, progression, and spread of various human cancers, including lung cancer. Molecular mechanisms that underlie the complex regulation of angiogenic processes are poorly understood. However, an increasing body of evidence indicates miRNAs as important regulators of tumor angiogenesis. Forceps biopsies were collected from tumor tissue, surrounding tissue, and non-tumor tissue from 50 NSCLC patients. Lung tissue samples from individuals with no clinical evidence of a cancerous disease served as controls. Immunohistochemical staining for Factor VIII was used to evaluate microvessel density (MVD). TaqMan® primer-probe sets were used in quantitative real-time RT-PCR reactions to determine expression levels of let-7b, miR-126, miR-9, and miR-19a. We demonstrated significantly higher MVD and decreased expression levels of let-7b and miR-126 in tumor tissue and surrounding tissue in comparison to corresponding non-tumor tissue or lung tissue from the control group. In addition, no differences in MVD and expression levels of both miRNAs between tumor tissue and surrounding tissue from NSCLC patients were observed. Low expression of both miRNAs correlated with high MVD and worse progression-free survival and overall survival. These observations strongly suggest similar molecular alternations within tumor tissue and surrounding tissue that comprise a specific microenvironment. Low expression of let-7b and miR-126 seems to have a possible anti-angiogenic role in lung tumor tissue and significantly correlates with worse survival outcomes for lung cancer patients. Moreover, the regulation of let-7b and miR-126 expression could have therapeutic potential because it could reduce tumor angiogenesis and therefore suppress tumor growth in lung cancer patients.  相似文献   

10.
Colorectal cancer (CRC) is one of the most prevalent cancers globally and is one of the leading causes of cancer-related deaths due to therapy resistance and metastasis. Understanding the mechanism underlying colorectal carcinogenesis is essential for the diagnosis and treatment of CRC. microRNAs (miRNAs) can act as either oncogenes or tumor suppressors in many cancers. A tumor suppressor role for miR-27b has recently been reported in neuroblastoma, while no information about miR-27b in CRC is available. In this study, we demonstrated that miR-27b expression is decreased in most CRC tissues and determined that overexpression of miR-27b represses CRC cell proliferation, colony formation and tumor growth in vitro and in vivo. We identified vascular endothelial growth factor C (VEGFC) as a novel target gene of miR-27b and determined that miR-27b functioned as an inhibitor of tumor progression and angiogenesis through targeting VEGFC in CRC. We further determined that DNA hypermethylation of miR-27b CpG islands decreases miR-27b expression. In summary, an anti-tumor role for miR-27b and its novel target VEGFC in vivo could lead to tumor necrosis and provide a rationale for developing miR-27b as a therapeutic agent.  相似文献   

11.
A variety of epigenetic factors involved in leukemia pathogenesis. Among various epigenetic factors, microRNAs (miRNAs) have emerged as important players, which affect a sequence of cellular and molecular signaling pathways. Leukemia is known as progressive cancer, which is related to many health problems in the world. It has been shown that the destruction of the blood-forming organs could lead to abnormal effects on the proliferation and development of leukocytes and their precursors. Despite many attempts for approved effective and powerful therapies for patients with leukemia, finding and developing new therapeutic approaches are required. One of the important aspects of leukemia therapy, identification of underlying cellular and molecular mechanisms involved in the pathogenesis of leukemia. Several miRNAs (ie, miR-103, miR-101, mit-7, let-7i, miR-424, miR-27a, and miR-29c) and play major roles in response to therapy in patients with leukemia. miRNAs exert their effects by targeting a variety of targets, which are associated with response to therapy in patients with leukemia. It seems that more understanding about the roles of miRNAs in response to therapy in patients with leukemia could contribute to better treatment of patients with leukemia. Here, for the first time, we summarized various miRNAs, which are involved in response to therapy in the treatment patients with leukemia.  相似文献   

12.
13.
Cutaneous squamous cell carcinoma (cSCC) is the second most common skin malignancy and it presents a therapeutic challenge in organ transplant recipient patients. Despite the need, there are only a few targeted drug treatment options. Recent studies have revealed a pivotal role played by microRNAs (miRNAs) in multiple cancers, but only a few studies tested their function in cSCC. Here, we analyzed differential expression of 88 cancer related miRNAs in 43 study participants with cSCC; 32 immunocompetent, 11 OTR patients, and 15 non-lesional skin samples by microarray analysis. Of the examined miRNAs, miR-135b was the most upregulated (13.3-fold, 21.5-fold; p=0.0001) in both patient groups. Similarly, the miR-135b expression was also upregulated in three cSCC cell lines when evaluated by quantitative real-time PCR. In functional studies, inhibition of miR-135b by specific anti-miR oligonucleotides resulted in upregulation of its target gene LZTS1 mRNA and protein levels and led to decreased cell motility and invasion of both primary and metastatic cSCC cell lines. In contrast, miR-135b overexpression by synthetic miR-135b mimic induced further down-regulation of LZTS1 mRNA in vitro and increased cancer cell motility and invasiveness. Immunohistochemical evaluation of 67 cSCC tumor tissues demonstrated that miR-135b expression inversely correlated with LZTS1 staining intensity and the tumor grade. These results indicate that miR-135b functions as an oncogene in cSCC and provide new understanding into its pathological role in cSCC progression and invasiveness.  相似文献   

14.
MicroRNAs (miRNAs) play important roles in diverse biological processes and are emerging as key regulators of tumorigenesis and tumor progression. To explore the dysregulation of miRNAs in breast cancer, a genome-wide expression profiling of 939 miRNAs was performed in 50 breast cancer patients. A total of 35 miRNAs were aberrantly expressed between breast cancer tissue and adjacent normal breast tissue and several novel miRNAs were identified as potential oncogenes or tumor suppressor miRNAs in breast tumorigenesis. miR-125b exhibited the largest decrease in expression. Enforced miR-125b expression in mammary cells decreased cell proliferation by inducing G2/M cell cycle arrest and reduced anchorage-independent cell growth of cells of mammary origin. miR-125b was found to perform its tumor suppressor function via the direct targeting of the 3’-UTRs of ENPEP, CK2-α, CCNJ, and MEGF9 mRNAs. Silencing these miR-125b targets mimicked the biological effects of miR-125b overexpression, confirming that they are modulated by miR-125b. Analysis of ENPEP, CK2-α, CCNJ, and MEGF9 protein expression in breast cancer patients revealed that they were overexpressed in 56%, 40–56%, 20%, and 32% of the tumors, respectively. The expression of ENPEP and CK2-α was inversely correlated with miR-125b expression in breast tumors, indicating the relevance of these potential oncogenic proteins in breast cancer patients. Our results support a prognostic role for CK2-α, whose expression may help clinicians predict breast tumor aggressiveness. In particular, our results show that restoration of miR-125b expression or knockdown of ENPEP, CK2-α, CCNJ, or MEGF9 may provide novel approaches for the treatment of breast cancer.  相似文献   

15.
16.
miRNAs are small non-coding RNAs of ~24 nt that can block mRNA translation and/or negatively regulate its stability. There is a large body of evidence that dysregulation of miRNAs is a hallmark of cancer. miRNAs are often aberrantly expressed and their function is linked to the regulation of oncogenes and/or tumor suppressor genes involved in cell signaling pathway. miR-221 and miR-222 are two highly homologous microRNAs, whose upregulation has been recently described in several types of human tumors. miR-221/222 have been considered to act as oncogenes or tumor suppressors, depending on tumor system. Silencing oncomiRs or gene therapy approaches, based on re-expression of miRNAs that are down-regulated in cancer cells, could represent a novel anti-tumor approach for integrated cancer therapy. Here we will review the role of miR-221/222 in cancer progression and their use as prognostic and therapeutic tools in cancer.  相似文献   

17.
18.
The c-Myc oncogene is amplified in many tumor types. It is an important regulator of cell proliferation and has been linked to altered miRNA expression, suggesting that c-Myc-regulated miRNAs might contribute to tumor progression. Although miR-26a has been reported to be upregulated in glioblastoma multiforme (GBM), the mechanism has not been established. We have shown that ectopic expression of miR-26a influenced cell proliferation by targeting PTEN, a tumor suppressor gene that is inactivated in many common malignancies, including GBM. Our findings suggest that c-Myc modulates genes associated with oncogenesis in GBM through deregulation of miRNAs via the c-Myc–miR-26a–PTEN signaling pathway. This may be of clinical relevance.  相似文献   

19.
20.
MicroRNAs (miRNAs) have been confirmed to play pivotal roles in hepatocellular carcinoma (HCC) carcinogenesis. However, the underlying function of microRNA-33b (miR-33b) in HCC remains unclear. Here, we found that miR-33b level was significantly reduced in both HCC tissues and tumor cell lines. Further, luciferase reporter assay and western blot analysis confirmed that Friend leukemia virus integration 1 (Fli-1) was a direct target of miR-33b. Overexpression of miR-33b dramatically suppressed HCC tumor cell proliferation and cell mobility, but facilitated tumor cell apoptosis in vitro. Besides, restoration of Fli-1 partially attenuated miR-33b-mediated inhibition of cell growth and metastasis via activating Notch1 signaling and its downstream effectors. Our findings demonstrate the important role of miR-33b/Fli-1 axis in HCC progression and provide novel therapeutic candidates for HCC clinical treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号