首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cytokine-induced killer (CIK) cells represent an exceptional T-cell population uniting a T cell and natural killer cell-like phenotype in their terminally differentiated CD3+CD56+ subset, which features non-MHC-restricted tumor-killing activity. CIK cells have provided encouraging results in initial clinical studies and revealed synergistic antitumor effects when combined with standard therapeutic procedures. We established the international registry on CIK cells (IRCC) to collect and evaluate clinical trials for the treatment of cancer patients in 2010. Moreover, our registry set new standards on the reporting of results from clinical trials using CIK cells. In the present update, a total of 106 clinical trials including 10,225 patients were enrolled in IRCC, of which 4,889 patients in over 30 distinct tumor entities were treated with CIK cells alone or in combination with conventional or novel therapies. Significantly improved median progression-free survival and overall survival were shown in 27 trials, and 9 trials reported a significantly increased 5-year survival rate. Mild adverse effects and graft-versus-host diseases were also observed in the studies. Recently, more efforts have been put into the improvement of antitumoral efficacy by CIK cells including the administration of immune checkpoint inhibitors and modification with chimeric antigen receptorc. The minimal toxicity and multiple improvements on their tumor-killing activity both make CIK cells a favorable therapeutic tool in the clinical practice of cancer immunotherapy.  相似文献   

2.
Cytokine-induced killer (CIK) cells are T cell derived ex vivo expanded cells with both NK and T cell properties. They exhibit potent anti-tumor efficacy against various malignancies in preclinical models and have proven safe and effective in clinical studies. We combined CIK cell adoptive immunotherapy with IL-12 cytokine immunotherapy in an immunocompetent preclinical breast cancer model. Combining CIK cells with IL-12 increased anti-tumor efficacy in vivo compared to either therapy alone. Combination led to full tumor remission and long-term protection in 75% of animals. IL-12 treatment sharply increased the anti-tumor efficacy of short-term cultured CIK cells that exhibited no therapeutic effect alone. Bioluminescence imaging based in vitro cytotoxicity and in vivo homing assays revealed that short-term cultured CIK cells exhibit full cytotoxicity in vitro, but display different tumor homing properties than fully expanded CIK cells in vivo. Our data suggest that short-term cultured CIK cells can be “educated” in vivo, producing fully expanded CIK cells upon IL-12 administration with anti-tumor efficacy in a mouse model. Our findings demonstrate the potential to improve current CIK cell-based immunotherapy by increasing efficacy and shortening ex vivo expansion time. This holds promise for a highly efficacious cancer therapy utilizing synergistic effects of cytokine and cellular immunotherapy.  相似文献   

3.
Successful treatment of cancer patients with a combination of monoclonal antibodies (mAb) and chemotherapeutic drugs has spawned various other forms of additional combination therapies, including vaccines or adoptive lymphocyte transfer combined with chemotherapeutics. These therapies were effective against established tumors in animal models and showed promising results in initial clinical trials in cancer patients, awaiting testing in larger randomized controlled studies. Although combination between immunotherapy and chemotherapy has long been viewed as incompatible as chemotherapy, especially in high doses meant to increase anti-tumor efficacy, has induced immunosuppression, various mechanisms may explain the reported synergistic effects of the two types of therapies. Thus direct effects of chemotherapy on tumor or host environment, such as induction of tumor cell death, elimination of regulatory T cells, and/or enhancement of tumor cell sensitivity to lysis by CTL may account for enhancement of immunotherapy by chemotherapy. Furthermore, induction of lymphopenia by chemotherapy has increased the efficacy of adoptive lymphocyte transfer in cancer patients. On the other hand, immunotherapy may directly modulate the tumor’s sensitivity to chemotherapy. Thus, anti-tumor mAb can increase the sensitivity of tumor cells to chemotherapeutic drugs and patients treated first with immunotherapy followed by chemotherapy showed higher clinical response rates than patients that had received chemotherapy alone. In conclusion, combination of active specific immunotherapy or adoptive mAb or lymphocyte immunotherapy with chemotherapy has great potential for the treatment of cancer patients which needs to be confirmed in larger controlled and randomized Phase III trials.  相似文献   

4.
Both adoptive immunotherapy and gene therapy hold a great promise for treatment of malignancies. However, these strategies exhibit limited anti-tumor activity, when they are used alone. In this study, we explore whether combination of cytokine-induced killer (CIK) adoptive immunotherapy with oncolytic adenovirus-mediated transfer of human interleukin-12 (hIL-12) gene induce the enhanced antitumor potency. Our results showed that oncolytic adenovirus carrying hIL-12 (AdCN205-IL12) could produce high levels of hIL-12 in liver cancer cells, as compared with replication-defective adenovirus expressing hIL-12 (Ad-IL12). AdCN205-IL12 could specifically induce cytotoxocity to liver cancer cells. Combination of CIK cells with AdCN205-IL12 could induce higher antitumor activity to liver cancer cells in vitro than that induced by either CIK or AdCN205-IL12 alone, or combination of CIK and control vector AdCN205-GFP. Furthermore, treatment of the established liver tumors with the combined therapy of CIK cells and AdCN205-IL12 resulted in tumor regression and long-term survival. High level expression of hIL-12 in tumor tissues could increase traffic of CIK cells to tumor tissues and enhance their antitumor activities. Our study provides a novel strategy for the therapy of cancer by the combination of CIK adoptive immunotherapy with oncolytic adenovirus-mediated transfer of immune stimulatory molecule hIL-12.  相似文献   

5.
The introduction of immunotherapy into cancer treatment has radically changed clinical management of tumors. However, only a minority of patients (approximately 10 to 30%) exhibit long-term response to monotherapy with immunotherapy. Moreover, there are still many cancer types, including pancreatic cancer and glioma, which are resistant to immunotherapy. Due to the immunomodulatory effects of radiotherapy, the combination of radiotherapy and immunotherapy has achieved better therapeutic effects in a number of clinical trials. However, radiotherapy is a double-edged sword in the sense that it also attenuates the immune system under certain doses and fractionation schedules, not all clinical trials show improved survival in the combination of radiotherapy and immunotherapy. Therefore, elucidation of the interactions between radiotherapy and the immune system is warranted to optimize the synergistic effects of radiotherapy and immunotherapy. In this review, we highlight the dark side as well as bright side of radiotherapy on tumor immune microenvironment and immune system. We also elucidate current status of radioimmunotherapy, both in preclinical and clinical studies, and highlight that combination of radiotherapy and immunotherapy attenuates combinatorial effects in some circumstances. Moreover, we provide insights for better combination of radiotherapy and immunotherapy.  相似文献   

6.
Multiple modalities for lung cancer therapy have emerged in the past decade, whereas their clinical applications and survival-beneficiary is little known. Vaccination with dendritic cells (DCs) or DCs/cytokine-induced killer (CIK) cells has shown limited success in the treatment of patients with advanced non-small-cell lung cancer. To evaluate and overcome these limitations in further studies, in the present review, we sum up recent progress about DCs or DCs/CIKs-based approaches for preclinical and clinical trials in patients with lung cancer and discuss some of the limited therapeutic success. Moreover, this review highlights the need to focus future studies on the development of new approaches for successful immunotherapy in patients with lung cancer.  相似文献   

7.
8.

Introduction

Cytokine-induced killer cells (CIK cells) are a heterogeneous subset of ex-vivo expanded T lymphocytes which are characterized with a MHC-unrestricted tumor-killing activity and a mixed T-NK phenotype. Adoptive CIK cells transfer, one of the adoptive immunotherapy represents a promising nontoxic anticancer therapy. However, in clinical studies, the therapeutic activity of adoptive CIK cells transfer is not as efficient as anticipated. Possible explanations are that abnormal tumor vasculature and hypoxic tumor microenvironment could impede the infiltration and efficacy of lymphocytes. We hypothesized that antiangiogenesis therapy could improve the antitumor activity of CIK cells by normalizing tumor vasculature and modulating hypoxic tumor microenvironment.

Methods

We combined recombinant human endostatin (rh-endostatin) and CIK cells in the treatment of lung carcinoma murine models. Intravital microscopy, dynamic contrast enhanced magnetic resonance imaging, immunohistochemistry, and flow cytometry were used to investigate the tumor vasculature and hypoxic microenvironment as well as the infiltration of immune cells.

Results

Our results indicated that rh-endostatin synergized with adoptive CIK cells transfer to inhibit the growth of lung carcinoma. We found that rh-endostatin normalized tumor vasculature and reduced hypoxic area in the tumor microenvironment. Hypoxia significantly inhibited the proliferation, cytotoxicity and migration of CIK cells in vitro and impeded the homing of CIK cells into tumor parenchyma ex vivo. Furthermore, we found that treatment with rh-endostatin significantly increased the homing of CIK cells and decreased the accumulation of suppressive immune cells in the tumor tissue. In addition, combination therapy produced higher level of tumor-infiltration lymphocytes compared with other treatments.

Conclusions

Our results demonstrate that rh-endostatin improves the therapeutic effect of adoptive CIK cells therapy against lung carcinomas and unmask the mechanisms of the synergistic antitumor efficacy, providing a new rationale for combining antiangiogenesis therapy with immunotherapy in the treatment of lung cancer.  相似文献   

9.
Although we have witnessed advances in many aspects of cancer research and therapy in recent years, the ability to cure the majority of patients with advanced renal cell carcinoma (RCC) remains elusive. At the same time, it has become increasingly apparent that a better understanding of the genetic alterations and immune dysregulations in RCC will play a key role in finding a treatment. Therefore, clinical trials directed at specific genetic alterations and studies exploiting components of the immune system are being conducted. These studies provide new hope for an improved outlook for patients presenting with advanced RCC. The future prospects of RCC therapy will be, without doubt, built on the foundation of current investigative efforts in gene and immune therapy. This article reviews the current role of immunotherapy and gene therapy in the management of metastatic RCC. Finally, current clinical trials focusing on gene and immune therapies are listed.  相似文献   

10.
Breast cancer rises as the most commonly diagnosed cancer in 2020. Among women, breast cancer ranks first in both cancer incidence rate and mortality. Treatment resistance developed from the current clinical therapies limits the efficacy of therapeutic outcomes, thus new treatment approaches are urgently needed. Chimeric antigen receptor (CAR) T cell therapy is a type of immunotherapy developed from adoptive T cell transfer, which typically uses patients'' own immune cells to combat cancer. CAR-T cells are armed with specific antibodies to recognize antigens in self-tumor cells thus eliciting cytotoxic effects. In recent years, CAR-T cell therapy has achieved remarkable successes in treating hematologic malignancies; however, the therapeutic effects in solid tumors are not up to expectations including breast cancer. This review aims to discuss the development of CAR-T cell therapy in breast cancer from preclinical studies to ongoing clinical trials. Specifically, we summarize tumor-associated antigens in breast cancer, ongoing clinical trials, obstacles interfering with the therapeutic effects of CAR-T cell therapy, and discuss potential strategies to improve treatment efficacy. Overall, we hope our review provides a landscape view of recent progress for CAR-T cell therapy in breast cancer and ignites interest for further research directions.  相似文献   

11.
Gene therapy is a new treatment modality in which new gene is introduced or existing gene is manipulated to cause cancer cell death or slow the growth of the tumor. In this review, we have discussed the different treatment approaches for cancer gene therapy; gene addition therapy, immunotherapy, gene therapy using oncolytic viruses, antisense ribonucleic acid (RNA) and RNA interference-based gene therapy. Clinical trials to date in head and neck cancer have shown evidence of gene transduction and expression, mediation of apoptosis and clinical response including pathological complete responses. The objective of this article is to provide an overview of the current available gene therapies for head and neck cancer.  相似文献   

12.
Cytokine-Induced killer (CIK) cells are raising growing interest in cellular antitumor therapy, as they can be easily expanded with a straightforward and inexpensive protocol, and are safe requiring only GMP-grade cytokines to obtain very high amounts of cytotoxic cells. CIK cells do not need antigen-specific stimuli to be activated and proliferate, as they recognize and destroy tumor cells in an HLA-independent fashion through the engagement of NKG2D. In several preclinical studies and clinical trials, CIK cells showed a reduced alloreactivity compared to conventional T cells, even when challenged across HLA-barriers; only in a few patients, a mild GVHD occurred after treatment with allogeneic CIK cells. Additionally, their antitumor activity can be redirected and further improved with chimeric antigen receptors, clinical-grade monoclonal antibodies or immune checkpoint inhibitors. The evidence obtained from a growing body of literature support CIK cells as a very promising cell population for adoptive immunotherapy. In this review, all these aspects will be addressed with a particular emphasis on the role of the cytokines involved in CIK cell generation, expansion and functionalization.  相似文献   

13.
Over the last few years, several newly developed immune-based cancer therapies have been shown to induce clinical responses in significant numbers of patients. As a result, there is a need to identify immune biomarkers capable of predicting clinical response. If there were laboratory parameters that could define patients with improved disease outcomes after immunomodulation, product development would accelerate, optimization of existing immune-based treatments would be facilitated and patient selection for specific interventions might be optimized. Although there are no validated cancer immunologic biomarkers that are predictive of clinical response currently in widespread use, there is much published literature that has informed investigators as to which markers may be the most promising. Population-based studies of endogenous tumor immune infiltrates and gene expression analyses have identified specific cell populations and phenotypes of immune cells that are most likely to mediate anti-tumor immunity. Further, clinical trials of cancer vaccines and other cancer directed immunotherapy have identified candidate immunologic biomarkers that are statistically associated with beneficial clinical outcomes after immune-based cancer therapies. Biomarkers that measure the magnitude of the Type I immune response generated with immune therapy, epitope spreading, and autoimmunity are readily detected in the peripheral blood and, in clinical trials of cancer immunotherapy, have been associated with response to treatment.  相似文献   

14.
Koh MB  Suck G 《Biologicals》2012,40(3):214-217
Cellular immunotherapy has been widely accepted as a new powerful modality of cancer treatment. The last 2 decades have seen impressive results in its application against haemato-oncologic malignancies, melanomas and prostate carcinoma. Cellular immunotherapy has since found applicability beyond cancer into autoimmunity and continues to expand in its clinical applicability. The discovery that stem cells have the ability to differentiate into more mature cell types, like neurones and myocardium, has focused research on using exogenous cells to repair damaged tissues. This led to numerous clinical trials using stem cells in myocardial infarction, cardiomyopathy and spinal cord damage. Results have ranged from modest to significant clinical outcomes with continuing debate on the exact process of regeneration achieved. The intertwining between cell therapy and transfusion medicine now includes research on progenitor cells for the production of mature red cells. It is also clear that cell therapy has enabled an improved understanding of the pathogenesis and clinical course of many diseases, while perhaps its role in regenerative medicine is most enticing. However, the critical role of manufacturing in terms of cost, complexity, reproducibility, and regulatory matters remains a central issue in the consideration of whether cell therapy has met all of its promise.  相似文献   

15.
Hans G. Klingemann 《Cytotherapy》2013,15(10):1185-1194
Although T-lymphocytes have received most of the attention in immunotherapy trials, new discoveries around natural killer (NK) cells suggest that they also should be suitable effector cells for cellular therapy of cancer. In addition to direct cytotoxicity, NK cells produce an array of immune-active cytokines, among them interferons and granulocyte-macrophage colony-stimulating factor, which places them at the crossroads of innate and adaptive immunity. They also augment monoclonal antibody activity through antibody-mediated cellular cytotoxicity and can be transfected with chimeric antigen receptors. One of the stumbling blocks for NK cell–based therapies has been the inability to predictably obtain and expand larger numbers from donors, but also to achieve sufficiently high transfection efficiency of target genes. The first clinical trials with NK cells suggest some benefit, but more definite evidence is needed to justify this relatively expensive treatment.  相似文献   

16.
Gastric and colorectal cancers (GC and CRC) have poor prognosis and are resistant to chemo- and/or radiotherapy. In the present study, the prophylactic effects of dendritic cell (DC) vaccination are evaluated on disease progression and clinical benefits in a group of 54 GC and CRC patients treated with DC immunotherapy combined with cytokine-induced killer (CIK) cells after surgery with or without chemo-radiotherapy. DCs were prepared from the mononuclear cells isolated from patients using IL-2/GM-CSF and loaded with tumor antigens; CIK cells were prepared by incubating peripheral blood lymphocytes with IL-2, IFN-γ, and CD3 antibodies. The DC/CIK therapy started 3 days after low-dose chemotherapy and was repeated 3–5 times in 2 weeks as one cycle with a total of 188.3±79.8×106 DCs and 58.8±22.3×108 CIK cells. Cytokine levels in patients'' sera before and after treatments were measured and the follow-up was conducted for 98 months to determine disease-free survival (DFS) and overall survival (OS). The results demonstrate that all cytokines tested were elevated with significantly higher levels of IFN-γ and IL-12 in both GC and CRC cohorts of DC/CIK treated patients. By Cox regression analysis, DC/CIK therapy reduced the risk of post-operative disease progression (p<0.01) with an increased OS (<0.01). These results demonstrate that in addition to chemo- and/or radiotherapy, DC/CIK immunotherapy is a potential effective approach in the control of tumor growth for post-operative GC and CRC patients.  相似文献   

17.
Combined modality immunotherapy and chemotherapy: a new perspective   总被引:2,自引:1,他引:1  
The results of recent clinical trials have demonstrated that cancer vaccines continue to struggle to achieve tangible clinical benefits as monotherapy. Tumor-induced abnormalities in the immune system hamper anti-tumor T cell responses limiting the effectiveness of cancer immunotherapy. Recently, evidence has been mounting to suggest that immunotherapy has the possibility of achieving better success when used in combination with conventional chemotherapy. In clinical trials, immune responses elicited by cancer vaccines appear to augment the effectiveness of subsequent conventional cancer therapies.  相似文献   

18.
Non-small cell lung cancer (NSCLC) still constitutes the most common cancer-related cause of death worldwide. All efforts to introduce suitable treatment options using chemotherapeutics or targeted therapies have, up to this point, failed to exhibit a substantial effect on the 5-year-survival rate. The involvement of epigenetic alterations in the evolution of different cancers has led to the development of epigenetics-based therapies, mainly targeting DNA methyltransferases (DNMTs) and histone-modifying enzymes. So far, their greatest success stories have been registered in hematologic neoplasias. As the effects of epigenetic single agent treatment of solid tumors have been limited, the investigative focus now lies on combination therapies of epigenetically active agents with conventional chemotherapy, immunotherapy, or kinase inhibitors. This review includes a short overview of the most important preclinical approaches as well as an extensive discussion of clinical trials using epigenetic combination therapies in NSCLC, including ongoing trials. Thus, we are providing an overview of what lies ahead in the field of epigenetic combinatory therapies of NSCLC in the coming years.  相似文献   

19.
Dendritic cell (DC) immunotherapy has shown significant promise in animal studies as a potential treatment for cancer. Its application in the clinic depends on the results of human trials. Here, we review the published clinical trials of cancer immunotherapy using exogenously antigen-exposed DCs. We begin with a short review of general properties and considerations in the design of such vaccines. We then review trials by disease type. Despite great efforts on the part of individual investigative groups, most trials to date have not yielded data from which firm conclusions can be drawn. The reasons for this include nonstandard DC preparation and vaccination protocols, use of different antigen preparations, variable means of immune assessment, and nonrigorous criteria for defining clinical response. While extensive animal studies have been conducted using DCs, optimal parameters in humans remain to be established. Unanswered questions include optimal cell dose, use of mature versus immature DCs for vaccination, optimal antigen preparation, optimal route, and optimal means of assessing immune response. It is critical that these questions be answered, as DC therapy is labor- and resource-intensive. Cooperation is needed on the part of the many investigators in the field to address these issues. If such cooperation is not forthcoming, the critical studies that will be required to make DC therapy a clinically and commercially viable enterprise will not take place, and this therapy, so promising in preclinical studies, will not be able to compete with the many other new approaches to cancer therapy presently in development. Trials published in print through June 2003 are included. We exclude single case reports, except where relevant, and trials with so many variables as to prevent interpretation about DC therapy effects.  相似文献   

20.
目前,免疫细胞生物学和免疫分子生物学发展迅猛,由于其具备低毒性和高效率的特性,肿瘤免疫治疗在恶性肿瘤治疗中所起的作用引起了学者们的广泛关注,其中细胞介导的过继免疫治疗为当前研究的热点之一。过继免疫治疗(adoptive cellular immunotherapy,ACI)是目前恶性肿瘤治疗的新方向,它通过向细胞免疫功能低下者回输具有抗肿瘤活性的免疫细胞,直接杀伤或间接杀伤肿瘤细胞,使其获得抗肿瘤免疫力。树突状细胞(Dendritic cell DC)是专职抗原递呈细胞(antigen presenting cell APC)之一,在机体免疫应答的启始、调节、维持中发挥核心作用。细胞因子诱导的杀伤(cytokine induced killer CIK)细胞具有高效的MHC非限制性溶瘤活性,具有极其广泛的杀瘤范围。近年来,国内外大量研究表明,联合培养的DC-CIK抗肿瘤活性提升明显,患者预后生存期延长,效果显著。本文就DC与CIK生物学特点及抗肿瘤作用予以简要综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号