首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Accumulating research works have reported that long noncoding RNAs (lncRNAs) are involved in various cancers, including cervical cancer. LncRNA DGCR5 has been identified in many cancers. However, the biological role of DGCR5 in cervical cancer remains barely known. We aimed to investigate the biological function of DGCR5 in cervical cancer progression. Here, in our current study, we observed that DGCR5 was downregulated in human cervical cancer cell lines (MS751, SiHa, HeLa, and HT-3) compared with the primary normal cervical squamous cells (NCSC1 and NCSC2). Then, DGCR5 was restrained by transfection with lenti-virus-short hairpin RNA (LV-shRNA) while induced by LV-DGCR5 in HeLa and C33A cells. Silence of DGCR5 obviously induced cervical cancer cell viability and cell proliferation. Reversely, upregulation of DGCR5 inhibited HeLa and C33A cell survival and proliferation. Furthermore, silencing of DGCR5 increased cervical cancer cell colony formation ability and decreased cell apoptosis, whereas its overexpression exhibited an opposite process. Moreover, DGCR5 suppressed migration and invasion capacity of cervical cancer cells. The Wnt signaling is integral in numerous biological processes. Here, we found that Wnt signaling was strongly activated in cervical cancer cells. Downregulation of DGCR5 contributed to cervical cancer progression by activating Wnt signaling. Subsequently, in vivo animal models were used to confirm that DGCR5 suppressed cervical cancer via targeting Wnt signaling. In conclusion, we reported that DGCR5 was involved in cervical cancer progression via modulating the Wnt pathway.  相似文献   

2.
3.
Cancer stem cells (CSCs) have been recognized as the significant cause of tumor recurrence. Long noncoding RNAs (lncRNAs) are involved in various cancers, including human laryngeal cancer. So far the correlation between lncRNA DiGeorge syndrome critical region gene 5 (DGCR5) and CSC-like properties in human laryngeal cancer remains barely known. In our current study, two human larynx squamous carcinoma cell lines (Hep-2 and Hep-2R) with different radio sensitivities were cultured. Interestingly, CSC-like phenotypes were much more enriched in Hep-2R cells. We found that DGCR5 was upregulated and microRNA-506 (miR-506) was downregulated in Hep-2R cells. In addition, silence of DGCR5 could inhibit the stemness and enhance the radiosensitivity of Hep-2R cells. Meanwhile, overexpression of miR-506 also suppressed the CSC-like traits and the radiosensitivity was increased significantly. In addition, miR-506 was predicted as target of DGCR5 and the correlation between them was validated in our study. Finally, we observed that Wnt pathway exerted a significant role in human laryngeal CSCs and DGCR5 inhibition could repress Wnt signaling activity by sponging miR-506. In vivo assays were performed and we found that DCGR5 depressed stemness of human laryngeal cancer cells through modulating miR-506 and Wnt signaling pathway. Taken these together, we reported that DGCR5 induced CSC-like properties by sponging miR-506 through activating Wnt in human laryngeal carcinoma cells.  相似文献   

4.
5.
6.
Long noncoding RNA (lncRNA) DiGeorge syndrome critical region gene 5 (DGCR5) has been reported to correlate with a variety of cancers, with its expression pattern and potential mechanism not clarified in gastric cancer (GC). In this study, we demonstrated that DGCR5 was downregulated in cancerous tissues and plasma samples from patients with GC, and its downregulation was associated with advanced TNM stage and positive lymphatic metastasis. Plasma DGCR5 had an area under the receiver operating characteristic curve (AUC) of 0.722 for diagnosis of GC. Gain- and loss-of-function of DGCR5 revealed that DGCR5 functioned as a competing endogenous RNA for miR-23b to suppress GC cell proliferation, invasion and migration, and facilitate apoptosis by regulating PTEN and BTG1 in vitro. Furthermore, the overexpression of DGCR5 suppressed tumor growth, and inhibited the expression of miR-23b and proliferation antigen Ki-67, but increased the expression of PTEN and BTG1 in vivo. In conclusion, our results show that DGCR5 is a tumor-suppressive lncRNA that regulates PTEN and BTG1 expression through directly binding to miR-23b. This mechanism may contribute to a better understanding of GC pathogenesis and provide a potential therapeutic strategy for GC.  相似文献   

7.
8.
Long non-coding RNAs (lncRNAs) are a class of regulatory noncoding RNAs. Emerging evidence highlights the critical roles of lncRNAs in the progression of hepatocellular carcinoma (HCC). Although many lncRNAs have been identified in the development of HCC, the association between DiGeorge syndrome critical region gene 5 (DGCR5) and HCC remains unclear. In the current study, we focused on the biological role of DGCR5 in HCC. We observed that DGCR5 was decreased in HCC cells, including SMCC7721, Hep3B, HepG2, MHCC-97L, MHCC-97H, and SNU449 hepatocellular carcinoma cells, compared with the normal human liver cell line THLE-3 normal human liver cells. In addition, DGCR5 overexpression could repress HCC cell growth, migration, and invasion considerably. Increasing studies have indicated the interactions between lncRNAs and microRNAs. MicroRNAs are endogenous small noncoding RNAs and they can play important roles in tumorigenesis. MicroRNA 346 (miR-346) has been demonstrated in various human cancer types, including HCC. MiR-346 was found to be increased in HCC cells and DGCR5 can act as a sponge of miR-346 to modulate the progression of HCC. The binding correlation between DGCR5 and miR-346 was validated in our research. Subsequently, Krüppel-like factor 14 (KLF14) was predicted as a downstream target of miR-346 and miR-346 can induce the development of HCC by inhibiting KLF14. Finally, we proved that DGCR5 can rescue the inhibited levels of KLF14 repressed by miR-346 mimics in MHCC-97H and Hep3B cells. Taken together, it was indicated in our study that DGCR5 can restrain the progression of HCC through sponging miR-346 and modulating KLF14 in vitro.  相似文献   

9.
Hepatocellular carcinoma is one of the most fatal cancers worldwide. Propofol is an intravenous anesthetic extensively used in clinical. Herein, we tested the anticancer activity of propofol on hepatocellular carcinoma, along with the internal molecular mechanism related to lncRNA DiGeorge syndrome critical region gene 5 (DGCR5). Followed by propofol stimulation, hepatocellular carcinoma Huh-7 and HepG2 cell viability, proliferation, migration, invasion, and apoptosis were tested, respectively. Then, DGCR5 expression levels in hepatocellular carcinoma tissues and cells were measured. sh-DGCR5 was transfected to silence DGCR5 expression. Subsequently, the influence of DGCR5 silence on propofol caused Huh-7 and HepG2 cell viability loss, proliferation inhibition, migration and invasion suppression, apoptosis induction, as well as Raf1/ERK1/2 and Wnt/β-catenin pathways inactivation were assessed, respectively. We discovered that propofol declined Huh-7 and HepG2 cell viability, proliferation, migration and invasion, but increased cell apoptosis. DGCR5 had a relatively lower expression level in hepatocellular carcinoma tissues and cells. Propofol elevated DGCR5 expression in Huh-7 and HepG2 cells. Increased expression of DGCR5 was connected with the anticancer activity of propofol on Huh-7 and HepG2 cells. Besides, propofol repressed Raf1/ERK1/2 and Wnt/β-catenin pathways through elevating DGCR5 expression. In conclusion, the anticancer activity of propofol on hepatocellular carcinoma was verified in this study. Propofol repressed hepatocellular carcinoma Huh-7 and HepG2 cell growth and metastasis at least by elevating DGCR5 and hereafter inactivating Raf1/ERK1/2 and Wnt/β-catenin pathways.  相似文献   

10.
11.
Long noncoding RNAs (lncRNAs) have been reported to dysregulate and involve in the pathology of hepatocellular carcinoma (HCC). Nonetheless, the functional role of lncRNA T cell leukemia/lymphoma 6 (TCL6) and its underlying mechanism in HCC remain unclear. Herein, we analyzed the expression of TCL6 and elucidated its mechanistic involvement in HCC. Bioinformatics analyses indicated TCL6 was evidently downregulated in HCC tissues compared with normal controls. TCL6 was downregulated while microRNA-106a-5p (miR-106a-5p) was upregulated in HCC cell lines. Moreover, knockdown or overexpression of TCL6 significantly raised or diminished the expression level of miR-106a-5p in HCC cells, similar to the effect of miR-106a-5p on TCL6 expression. Functionally, TCL6 inhibited the proliferative, migratory, and invasive potentials of HCC cells as analyzed by cell counting kit-8, scratch wound healing, and transwell assays, respectively. Conversely, miR-106a-5p exerted an opposite effect on the proliferative, migratory, and invasive potentials of HCC. RNA immune precipitation and luciferase reporter assays revealed TCL6 directly bound to miR-106a-5p and luciferase reporter assay verified phosphatase and tensin homolog (PTEN) was a target gene of miR-106a-5p. Mechanistically, TCL6 knockdown evidently reduced PTEN expression at both messenger RNA and protein levels, and miR-106a-5p inhibitor partially rescued this reduction effect in HCC cells. Additionally, western blot assays demonstrated miR-106a-5p downregulation or TCL6 overexpression promoted the protein level of PTEN, and suppressed the phosphorylation level of AKT, the protein level of phosphatidylinositol 3-kinase (PI3K). Collectively, these results revealed TCL6 as a tumor-suppressive lncRNA regulates PI3K/AKT signaling pathway via directly binding to miR-106a-5p in HCC. This mechanism provides a theoretical basis for HCC pathogenesis and a potential therapeutic strategy for HCC treatment.  相似文献   

12.
13.
14.
15.
16.
LncRNAs exhibit crucial roles in various pathological diseases, including hepatocellular carcinoma (HCC). Therefore, it is significant to recognize the dysregulated lncRNAs in HCC progression. Recently, LINC01133 has been identified in several tumors. However, the biological role of LINC01133 in HCC remains poorly understood. Currently, we focused on the function of LINC01133 in HCC development. We observed that LINC01133 was significantly increased in HCC cells including HepG2, Hep3B, MHCC-97L, SK-Hep-1, and MHCC-97H cells compared with the normal human liver cell line HL-7702. In addition, PI3K/AKT signaling was highly activated in HCC cells. Knockdown of LINC01133 was able to inhibit HCC cell proliferation, cell colony formation, cell apoptosis, and blocked cell cycle arrest in the G1 phase. For another, downregulation of LINC01133 repressed HCC cell migration and invasion. Subsequently, the PI3K/AKT signaling pathway was strongly suppressed by silence of LINC01133 in Hep3B and HepG2 cells. Then, in vivo tumor xenografts models were established using Hep3B cells to explore the function of LINC01133 in HCC progression. Consistently, our study indicated that knockdown of LINC01133 dramatically repressed HCC tumor progression through targeting the PI3K/AKT pathway in vivo. Taken these together, we revealed that LINC01133 contributed to HCC progression by activating the PI3K/AKT pathway.  相似文献   

17.
Long noncoding RNAs (lncRNAs) are recently recognized as noteworthy regulators of different tumors, counting gastric cancer (GC). Lately, long intergenic noncoding RNA (LINC) 00665 has been verified to display significant parts in several cancers. Be that as it may, its role and mechanism in GC movement still stay uninvestigated. As of now, we observed LINC00665 was obviously GC cells (MKN28, BGC-823, SGC7-901, AGS, HGC-27) in comparison to GES-1 cells, which was identified as human normal gastric epithelial cells. Then, LINC00665 was obviously downregulated in GC cells including AGS and BGC-823 cells. Loss of LINC00665 greatly repressed AGS and BGC-823 cell survival and cell expansion. Moreover, GC cell apoptosis was significantly induced by the loss of LINC00665. For another, we found that the GC cell cycle was also captured in G1 and G2 phases. The experiments on cell migration and invasion indicated that knockdown of LINC00665 restrained GC cell migration and invasion. Modifications in Wnt signaling are closely associated with the development of cancers. Here, we found that Wnt signaling was significantly inactivated by the silence of LINC00665 in GC cells. β-catenin and cyclinD1 were restrained whereas GSK-3β was induced by the inhibition of LINC00665 in GC cells. Furthermore, we confirmed the impact of LINC00665 in vivo using xenograft models. Taken these together, we indicated that LINC00665 could function as a novel biomarker in GC progression.  相似文献   

18.
19.
Cardiac hypertrophy (CH) is an adaptive cardiac response to overload whose decompensation eventually leads to heart failure or sudden death. Recently, accumulating studies have indicated the implication of long noncoding RNAs (lncRNAs) in CH progression. MAGI1-IT1 is a newly-identified lncRNA that is highly associated with CH, while its specific role in CH progression remains masked. In this study, we uncovered that MAGI1-IT1 was distinctly downregulated in angiotensin (Ang) II-induced hypertrophic H9c2 cells. Also, MAGI1-IT1 overexpression in Ang II-treated H9c2 cells strikingly abolished the enlarged surface area and the enhanced levels of hypertrophic markers such as ANP, BNP, and β-MHC. Mechanically, we found MAGI1-IT1 sponged miR-302e which was identified as a hypertrophy-facilitator here, and that miR-302e upregulation countervailed the inhibition of MAGI1-IT1 overexpression on hypertrophic cells. Moreover, it was confirmed that MAGI1-IT1 boosted DKK1 expression by absorbing miR-302e. Subsequently, we also illustrated that MAGI1-IT1 inactivated Wnt/beta-catenin signaling through a DKK1-dependent pathway. Finally, both the DKK1 inhibition and LiCI (Wnt activator) supplement abrogated the hypertrophy-suppressive impact of MAGI1-IT1 on Ang II-simulated hypertrophic H9c2 cells. Jointly, our findings disclosed that MAGI1-IT1 functioned as a negative regulator in CH through inactivating Wnt/beta-catenin pathway via targeting miR-302e/DKK1 axis, revealing a novel road for CH treatment.  相似文献   

20.
Increasing evidence has shown that numerous long noncoding RNAs (lncRNAs) play critical roles in tumorigenesis. Herein, we investigated the biological role of lncRNA linc00467 in the cancer biology of hepatocellular carcinoma (HCC). We observed that linc00467 was upregulated in HCC tissues and cells. Silencing of linc00467 using small interfering RNA interference significantly inhibited the growth and motility of HCC cells, and increased cell apoptosis through regulating the Bcl-2/Bax axis and the caspase cascade, suggesting that linc00467 exerted oncogenic functions in the progression of HCC. Moreover, we found that linc00467 could target miR-18a-5p, and NEDD9 was a target for miR-18a-5p in HCC cells. Furthermore, either the miR-18a-5p inhibitor or upregulation of NEDD9 could recover the inhibitory effects caused by silencing of linc00467. In conclusion, our data highlighted the oncogenic role of linc00467 in HCC progression by regulating the miR-18a-5p/NEDD9 axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号