首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
《Molecular cell》2023,83(2):281-297.e10
  1. Download : Download high-res image (333KB)
  2. Download : Download full-size image
  相似文献   

2.
Hydraulic architecture of leaf venation in Laurus nobilis L.   总被引:3,自引:3,他引:0  
Veins are the main irrigation system of the leaf lamina and an understanding of the hydraulic architecture of the vein networks is essential for understanding leaf function. However, determination of leaf hydraulic parameters is challenging, because for most leaves the vein system is reticulate, contains a hierarchy of different vein sizes, and consists of leaky conduits. We present a new approach that allows for measurements of pressure differences between the petiole and any vein within the leaf. Measurements of Laurus nobilis leaves indicate that first‐ and second‐order veins have high axial conductance and relatively small radial permeability, thus allowing water to reach distal areas of the leaf with only a small loss of water potential. Higher order veins tend to be more hydraulically resistant and permit greater radial leakage. This design allows for a relatively equitable distribution of water potential and thus reflects the capacity of the venation to provide a relatively homogeneous water supply across the leaf lamina, with only the leaf margins being hydraulically disadvantaged relative to the rest of the leaf.  相似文献   

3.
Inflammasomes are multiprotein complexes that serve as a platform for caspase-1 activation and interleukin-1β (IL-1β) maturation as well as pyroptosis. Though a number of inflammasomes have been described, the NLRP3 inflammasome is the most extensively studied. NLRP3 inflammasome is triggered by a variety of stimuli, including infection, tissue damage and metabolic dysregulation, and then activated through an integrated cellular signal. Many regulatory mechanisms have been identifi ed to attenuate NLRP3 inflammasome signaling at multiple steps. Here, we review the developments in the negative regulation of NLRP3 inflammasome that protect host from inflammatory damage.  相似文献   

4.
5.
目的 研究慢性PM2.5暴露对小鼠肺炎症和NLRP3炎性小体活性的影响,为防治PM2.5所致肺损伤提供新靶点。方法 雄性C57BL/6J小鼠通过不同剂量气管滴注法进行PM2.5染毒,剂量为2,10mg/(kg·bw),对照组小鼠滴注生理盐水。小鼠连续滴注20次,每3d染毒1次后,取血和肺组织。三组小鼠进行血细胞计数;用免疫荧光染色法检测肺组织巨噬细胞水平;用试剂盒测定肺组织中白细胞介素(interleukin,IL)-1β,IL-18水平及caspase-1活性;用实时定量PCR法检测肺组织NLRP3炎性小体相关mRNA表达水平。结果 两个剂量PM2.5染毒均能明显降低单核细胞百分比(P<0.01),增加中性粒白细胞百分比(P<0.01);导致肺炎症发生;增加肺组织caspase-1活性(P<0.01)及NLRP3和ASC的mRNA表达(P<0.01)。与对照组相比,两个剂量组小鼠肺组织IL-1β和IL-18水平均显著增高(P<0.01)。结论 慢性PM2.5暴露可能通过激活肺组织NLRP3炎性小体导致肺炎症发生。  相似文献   

6.
Naoxintong (NXT) is a Chinese Materia Medica standardized product extracted from 16 various kinds of Chinese traditional herbal medicines including Salvia miltiorrhiza, Angelica sinensis, Astragali Radix. Naoxintong is clinically effective in treating ischaemia heart disease. Nucleotide‐binding oligomerization domain‐Like Receptor with a Pyrin domain 3 (NLRP3) inflammasome has been critically involved in myocardial ischaemia/reperfusion (I/R) injury. Here, we have been suggested that NXT might attenuate myocardial I/R injury via suppression of NLRP3 inflammasome activation. Male C57BL6 mice were subjected to myocardial I/R injury via 45 min. coronary ligation and release for the indicated times. Naoxintong (0.7 g/kg/day) and PBS were orally administrated for 2 weeks before surgery. Cardiac function assessed by echocardiography was significantly improved in the NXT group compared to PBS group at day 2 after myocardial I/R. NLRP3 inflammasome activation is crucially involved in the initial inflammatory response after myocardial I/R injury, leading to cleaved caspase‐1, mature interleukin (IL)‐1β production, accompanying by macrophage and neutrophil infiltration. The cardioprotective effect of NXT was associated with a diminished NLRP3 inflammasome activation, decreased pro‐inflammatory macrophage (M1 macrophages) and neutrophil infiltration after myocardial I/R injury. In addition, serum levels of IL‐1β, indicators of NLRP3 inflammasome activation, were also significantly suppressed in the NXT treated group after I/R injury. Naoxintong exerts cardioprotive effects at least partly by suppression of NLRP3 inflammasome activation in this I/R injury model.  相似文献   

7.
Acute liver failure (ALF) is a rare disease characterized by the sudden onset of serious hepatic injury, as manifested by a profound liver dysfunction and hepatic encephalopathy in patients without prior liver disease. In this paper, we aim to investigate whether verapamil, an antagonist of TXNIP, inhibits early ALF through suppressing the NLRP3 inflammasome pathway. Firstly, an ALF mouse model was induced by lipopolysaccharide (LPS)/D-galactosamine (GalN) treatment. The optimal concentration of verapamil in treating early ALF mice was determined followed by investigation on its mechanism in LPS/GalN-induced liver injury. Western blot analysis and co-immunoprecipitation were performed to determine the activation of the TXNIP/NLRP3 inflammasome pathway. Subsequently, overexpression of NLRP3 in mouse liver was induced by transfection with AAV-NRLP3 in vivo and in vitro to identity whether verapamil inhibited early ALF through suppressing the activation of NLRP3 inflammasome. We found that ALF was induced by LPS/GalN in mice but was alleviated by verapamil through a mechanism that correlated with suppression of the NLRP3 inflammasome pathway. Oxidative stress and inflammatory response were induced by intraperitoneal injection of LPS/GalN, but alleviated with injection of verapamil. Overexpression of NLRP3 via AAV in mouse liver in vivo and in vitro reduced the therapeutic effect of verapamil on LPS/GalN-induced ALF. Taken together, the TXNIP antagonist verapamil could inhibit activation of the NLRP3 inflammasome, inflammatory responses and oxidative stress to alleviate LPS/GalN-induced ALF.  相似文献   

8.
Oxidative stress is a key mechanism underlying ozone-induced lung injury. Mitochondria can release mitochondrial reactive oxidative species (mtROS), which may lead to the activation of NLRP3 inflammasome. The goal of this study was to examine the roles of mtROS and NLRP3 inflammasome in acute ozone-induced airway inflammation and bronchial hyperresponsiveness (BHR). C57/BL6 mice (n?=?8/group) were intraperitoneally treated with vehicle (phosphate buffered saline, PBS) or mitoTEMPO (mtROS inhibitor, 20?mg/kg), or orally treated with VX-765 (caspse-1 inhibitor, 100?mg/kg) 1?h before the ozone exposure (2.5?ppm, 3?h). Compared to the PBS-treated ozone-exposed mice, mitoTEMPO reduced the level of total malondialdehyde in bronchoalveolar lavage (BAL) fluid and increased the expression of mitochondrial complexes II and IV in the lung 24?h after single ozone exposure. VX-765 inhibited ozone-induced BHR, BAL total cells including neutrophils and eosinophils, and BAL inflammatory cytokines including IL-1α, IL-1β, KC, and IL-6. Both mitoTEMPO and VX-765 reduced ozone-induced mtROS and inhibited capase-1 activity in lung tissue whilst VX-765 further inhibited DRP1 and MFF expression, increased MFN2 expression, and down-regulated caspase-1 expression in the lung tissue. These results indicate that acute ozone exposure induces mitochondrial dysfunction and NLRP3 inflammasome activation, while the latter has a critical role in the pathogenesis of ozone-induced airway inflammation and BHR.  相似文献   

9.
10.
11.
Severe hepatic inflammation is a common cause of acute or chronic liver disease. Macrophages are one of the key mediators which regulate the progress of hepatic inflammation. Increasing evidence shows that the TAM (TYRO3, AXL and MERTK) family of RTKs (receptor tyrosine kinases), which is expressed in macrophages, alleviates inflammatory responses through a negative feedback loop. However, the functional contribution of each TAM family member to the progression of hepatic inflammation remains elusive. In this study, we explore the role of individual TAM family proteins during autophagy induction and evaluate their contribution to hepatic inflammation. Among the TAM family of RTKs, AXL (AXL receptor tyrosine kinase) only induces autophagy in macrophages after interaction with its ligand, GAS6 (growth arrest specific 6). Based on our results, autophosphorylation of 2 tyrosine residues (Tyr815 and Tyr860) in the cytoplasmic domain of AXL in mice is required for autophagy induction and AXL-mediated autophagy induction is dependent on MAPK (mitogen-activated protein kinase)14 activity. Furthermore, induction of AXL-mediated autophagy prevents CASP1 (caspase 1)-dependent IL1B (interleukin 1, β) and IL18 (interleukin 18) maturation by inhibiting NLRP3 (NLR family, pyrin domain containing 3) inflammasome activation. In agreement with these observations, axl?/? mice show more severe symptoms than do wild-type (Axl+/+) mice following acute hepatic injury induced by administration of lipopolysaccharide (LPS) or carbon tetrachloride (CCl4). Hence, GAS6-AXL signaling-mediated autophagy induction in murine macrophages ameliorates hepatic inflammatory responses by inhibiting NLRP3 inflammasome activation.  相似文献   

12.
Infl ammasome is a large protein complex activated upon cellular stress or microbial infection, which triggers maturation of pro-inflammatory cytokines interleukin-1β and interleukin-18 through caspase-1 activation. Nod-like receptor family protein 3 (NLRP3) is the most characterized infl ammasome activated by various stimuli. However, the mechanism of its activation is unclear and its exact cellular localization is still unknown. We examined the potential co-localization of NLRP3 infl ammasome with mitochondria and seven other organelles under adenosine triphosphate, nigericin or monosodium urate stimulation in mouse peritoneal macrophages using confocal microscopy approach. Our results revealed that the activated endogenous apoptosis-associated speck-like protein containing a CARD (ASC) pyroptosome forms in the cytoplasm and co-localizes with NLRP3 and caspase-1, but not with any of the organelles screened. This study indicates that the ASC pyroptosome universally localizes within the cytoplasm rather than with any specifi c organelles.  相似文献   

13.
《Cell reports》2023,42(1):111941
  1. Download : Download high-res image (225KB)
  2. Download : Download full-size image
  相似文献   

14.
15.
Atherosclerosis is widely known to be a chronic inflammatory disease. C-reactive protein (CRP), an important inflammatory factor, plays an essential role in the pathogenesis of atherosclerosis. Nicotine, the main addictive component of cigarette, has been shown to induce the production of CRP. The aim of this study was to investigate the effect of rosmarinic acid (RA), a polyphenol with antiinflammatory activity, on nicotine-induced elevation of CRP in vascular smooth muscle cells (VSMCs). We found that pretreatment of VSMCs with RA attenuated nicotine-induced expression of CRP in a time- and dose-dependant manner. In addition, RA also inhibited the activation of NLR family pyrin domain containing 3 (NLRP3) inflammasome and reactive oxygen species (ROS) production resulting from nicotine treatment in VSMCs. To confirm these findings in vivo, we constructed a nicotine-induced atherosclerosis rat model. RA did not significantly reduce the serum nicotine level of the rats, whereas it significantly decreased the levels of serum lipids, including concentrations of cholesterol, triglycerides, and low-density lipoprotein cholesterol, and the serum level of CRP. RA also led to diminished nicotine-induced activation of NLRP3 inflammasome and elevation in the CRP level in the aortic tissue of the model rats. The results of this study suggested a protective role of RA in nicotine-induced atherosclerosis by inhibiting the ROS–NLRP3 inflammasome–CRP axial, and RA therefore represented a potential effective therapeutic approach to atherosclerosis, in particular for those who smoke.  相似文献   

16.
NLRP3 inflammasome activation plays an important role in diabetic cardiomyopathy (DCM), which may relate to excessive production of reactive oxygen species (ROS). Gypenosides (Gps), the major ingredients of Gynostemma pentaphylla (Thunb.) Makino, have exerted the properties of anti‐hyperglycaemia and anti‐inflammation, but whether Gps improve myocardial damage and the mechanism remains unclear. Here, we found that high glucose (HG) induced myocardial damage by activating the NLRP3 inflammasome and then promoting IL‐1β and IL‐18 secretion in H9C2 cells and NRVMs. Meanwhile, HG elevated the production of ROS, which was vital to NLRP3 inflammasome activation. Moreover, the ROS activated the NLRP3 inflammasome mainly by cytochrome c influx into the cytoplasm and binding to NLRP3. Inhibition of ROS and cytochrome c dramatically down‐regulated NLRP3 inflammasome activation and improved the cardiomyocyte damage induced by HG, which was also detected in cells treated by Gps. Furthermore, Gps also reduced the levels of the C‐reactive proteins (CRPs), IL‐1β and IL‐18, inhibited NLRP3 inflammasome activation and consequently improved myocardial damage in vivo. These findings provide a mechanism that ROS induced by HG activates the NLRP3 inflammasome by cytochrome c binding to NLRP3 and that Gps may be potential and effective drugs for DCM via the inhibition of ROS‐mediated NLRP3 inflammasome activation.  相似文献   

17.
The NOD-like receptor family, pyrin domain–containing protein 3 (NLRP3) inflammasome plays an important role in the development of atherosclerosis. The activated NLRP3 inflammasome has been reported to promote macrophage foam cell formation, but not all studies have obtained the same result, and how NLRP3 inflammasome is involved in the formation of foam cells remains elusive. We used selective NLRP3 inflammasome inhibitors and NLRP3-deficient THP-1 cells to assess the effect of NLRP3 inflammasome inhibition on macrophage foam cell formation, oxidized low-density lipoprotein (ox-LDL) uptake, esterification, and cholesterol efflux, as well as the expression of associated proteins. Inhibition of the NLRP3 inflammasome attenuated foam cell formation, diminished ox-LDL uptake, and promoted cholesterol efflux from THP-1 macrophages. Moreover, it downregulated CD36, acyl coenzyme A: cholesterol acyltransferase-1 and neutral cholesterol ester hydrolase expression; upregulated ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-BI) expression; but had no effect on the expression of scavenger receptor class A and ATP-binding cassette transporter G1. Collectively, our findings show that inhibition of the NLRP3 inflammasome decreases foam cell formation of THP-1 macrophages via suppression of ox-LDL uptake and enhancement of cholesterol efflux, which may be due to downregulation of CD36 expression and upregulation of ABCA1 and SR-BI expression, respectively.  相似文献   

18.
Dysregulation of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome is involved in many chronic inflammatory diseases, including gouty arthritis. Activation of the NLRP3 inflammasome requires priming and activation signals: the priming signal controls the expression of NLRP3 and interleukin (IL)-1β precursor (proIL-1β), while the activation signal leads to the assembly of the NLRP3 inflammasome and to caspase-1 activation. Here, we reported the effects of the alcoholic extract of Taiwanese green propolis (TGP) on the NLRP3 inflammasome in vitro and in vivo. TGP inhibited proIL-1β expression by reducing nuclear factor kappa B activation and reactive oxygen species (ROS) production in lipopolysaccharide-activated macrophages. Additionally, TGP also suppressed the activation signal by reducing mitochondrial damage, ROS production, lysosomal rupture, c-Jun N-terminal kinases 1/2 phosphorylation and apoptosis-associated speck-like protein oligomerization. Furthermore, we found that TGP inhibited the NLRP3 inflammasome partially via autophagy induction. In the in vivo mouse model of uric acid crystal-induced peritonitis, TGP attenuated the peritoneal recruitment of neutrophils, and the levels of IL-1β, active caspase-1, IL-6 and monocyte chemoattractant protein-1 in lavage fluids. As a proof of principle, in this study, we purified a known compound, propolin G, from TGP and identified this compound as a potential inhibitor of the NLRP3 inflammasome. Our results indicated that TGP might be useful for ameliorating gouty inflammation via inhibition of the NLRP3 inflammasome.  相似文献   

19.
20.
Epoxyeicosatrienoic acids (EETs) derived from arachidonic acid exert anti-inflammation effects. We have reported that blocking the degradation of EETs with a soluble epoxide hydrolase (sEH) inhibitor protects mice from lipopolysaccharide (LPS)-induced acute lung injury (ALI). The underlying mechanisms remain essential questions. In this study, we investigated the effects of EETs on the activation of nucleotide-binding domain leucine-rich repeat-containing receptor, pyrin domain-containing-3 (NLRP3) inflammasome in murine macrophages. In an LPS-induced ALI murine model, we found that sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl), TPPU, profoundly attenuated the pathological injury and inhibited the activation of the NLRP3 inflammasome, characterized by the reduction of the protein expression of NLRP3, ASC, pro-caspase-1, interleukin precursor (pro-IL-1β), and IL-1β p17 in the lungs of LPS-treated mice. In vitro, primary peritoneal macrophages from C57BL/6 were primed with LPS and activated with exogenous adenosine triphosphate (ATP). TPPU treatment remarkably reduced the expression of NLRP3 inflammasome-related molecules and blocked the activation of NLRP3 inflammasome. Importantly, four EETs (5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET) inhibited the activation of NLRP3 inflammasome induced by LPS + ATP or LPS + nigericin in macrophages in various degree. While the inhibitory effect of 5,6-EET was the weakest. Mechanismly, EETs profoundly decreased the content of reactive oxygen species (ROS) and restored the calcium overload in macrophages receiving LPS + ATP stimulation. In conclusion, this study suggests that EETs inhibit the activation of the NLRP3 inflammasome by suppressing calcium overload and ROS production in macrophages, contributing to the therapeutic potency to ALI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号