首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Curcumin is a polyphenolic compound derived from Curcumin longa L. There are growing bodies of evidence revealing the antitumor effect of curcumin in different tumors; although the molecular mechanism behind this inhibition in glioblastoma multiform (GBM) still remains unclear. Here we investigated the antitumor activity of nano micelles curcumin compared with erlotinib in U-373 cells in monolayer cell cultures and spheroids models. Furthermore, we characterized affecting cell cycle perturbation, as well as apoptosis induction in GBM cells. The antiproliferative activity of nano micelles curcumin and erlotinib were assessed in monolayer and spheroid models. The influence of the cell cycle and expression levels of nuclear factor κB (NF-κB) and Wnt/β-catenin pathway was checked. Nano micelles curcumin suppressed cell growth in U-373 cells via modulation of Wnt and NF-κB pathways. Moreover, cells developed an early G2/M cell cycle arrest followed by sub-G1 apoptosis and apoptotic bodies formation posttreatment with nano micelles curcumin and erlotinib. In the core signaling pathways of GBM, nano micelles curcumin either significantly influences the NF-κB pathway by decreasing p-65 expression or significantly inhibits the Wnt/β-catenin pathway by declining cyclin D1 expression. In conclusion, we have shown that nano micelles curcumin effectively prevent proliferation, and invasion of GBM cells through perturbation of Wnt/β-catenin and NF-κB pathways, suggesting further investigations on the therapeutic application of this novel anticancer drug in in vivo models.  相似文献   

2.
3.
Ureter reconstruction is a difficult procedure in urology. Adipose-derived stem cells (ADSCs), along with multipotency and self-renewal capacity, are a preferred choice for tissue engineering-based ureteral reconstruction. We explored the synergic role of cathelicidin LL37 (LL37) in epithelial and smooth-muscle-like differentiation. ADSCs were separated from adipose tissues of mouse and characterized by flow cytometry. The ADSCs were then stably transfected with pGC-FU-GFP (pGC) or pGC containing full-length LL37 (pGC-LL37), respectively. Cell viability and apoptosis were respectively estimated in the stably transfected cells and non-transfected cells. Then, qRT-PCR and Western blot analysis were used for determinations of epithelial marker expressions after induction by all-trans retinoic acid as well as smooth-muscle-like marker expressions after induction by transforming growth factor-β1. Then, possibly involved signaling pathways and extracellular expression of LL37 were detected. Cell viability and apoptosis were not changed after LL37 overexpression. Expression levels of epithelial and smooth-muscle-like markers were significantly upregulated by LL37 overexpression. Moreover, expressions of key kinases involved in the Wnt/β-catenin pathway as well as epithelial marker were upregulated by the LL37 overexpression, while it was reversed by Wnt/β-catenin inhibitor. Likewise, expressions of key kinases involved in the nuclear factor κB (NF-κB) pathway as well as smooth-muscle-like markers were upregulated by LL37 overexpression, which was reversed by NF-κB inhibitor. LL37 was found in the culture medium. LL37, which could be released into the medium, had no impact on cell proliferation and apoptosis of ADSCs. However, LL37 promoted epithelial and smooth-muscle-like differentiation through activating the Wnt/β-catenin and NF-κB pathways, respectively.  相似文献   

4.
5.
6.
J Kim  W Chang  Y Jung  K Song  I Lee 《Cytokine》2012,60(1):242-248
Wnt5a has been implicated in the activation of macrophages. However, the profile and mechanism of downstream regulation has not been characterized. In this study, we have investigated the regulation of Wnt5a-induced activation in monocytic THP-1 cells. Wnt5a activated THP-1 cells, enhancing adhesion to endothelial cells. Hypoxia induced the production of Wnt5a, suggesting a role in the hypoxia-induced activation of macrophages. Wnt5a induced the expression of various pro-inflammatory cytokines and inflammatory mediators, particularly IL8 and CXCL2, suggesting a major role in the secretion of CXC chemokines by macrophages. Wnt5a induced JNK phosphorylation and NF-κB activation via β-catenin-independent signaling. Interestingly, SP600125, a specific inhibitor of JNK, inhibited Wnt5a-induced activation of NF-κB, supporting JNK-dependent NF-κB activation. Our data suggest that Wnt5a activates monocytic cells via JNK and NF-κB activation.  相似文献   

7.
8.
Aberrant activation of Wnt/β-catenin signaling is common in most sporadic and inherited colorectal cancer (CRC) cells leading to elevated β-catenin/TCF transactivation. We previously identified the neural cell adhesion molecule L1 as a target gene of β-catenin/TCF in CRC cells. Forced expression of L1 confers increased cell motility, invasion, and tumorigenesis, and the induction of human CRC cell metastasis to the liver. In human CRC tissue, L1 is exclusively localized at the invasive front of such tumors in a subpopulation of cells displaying nuclear β-catenin. We determined whether L1 expression confers metastatic capacities by inducing an epithelial to mesenchymal transition (EMT) and whether L1 cosegregates with cancer stem cell (CSC) markers. We found that changes in L1 levels do not affect the organization or expression of E-cadherin in cell lines, or in invading CRC tissue cells, and no changes in other epithelial or mesenchymal markers were detected after L1 transfection. The introduction of major EMT regulators (Slug and Twist) into CRC cell lines reduced the levels of E-cadherin and induced fibronectin and vimentin, but unlike L1, Slug and Twist expression was insufficient for conferring metastasis. In CRC cells L1 did not specifically cosegregate with CSC markers including CD133, CD44, and EpCAM. L1-mediated metastasis required NF-κB signaling in cells harboring either high or low levels of endogenous E-cadherin. The results suggest that L1-mediated metastasis of CRC cells does not require changes in EMT and CSC markers and operates by activating NF-κβ signaling.  相似文献   

9.
Catalpol, one of the main active ingredients isolated from Rehmannia glutinosa, was reported to possess anticancer activity. However, the role of catalpol in transforming growth factor β1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) in human non–small-cell lung cancer (NSCLC) cells has not been elucidated. The objective of this study was to investigate the effect of catalpol on EMT in human NSCLC cells. Our results showed that catalpol significantly inhibited the TGF-β1-induced cell migration and invasion of A549 cells, as well as repressed matrix metalloproteinase (MMP)2 and MMP9 expression induced by TGF-β1 in A549 cells. In addition, catalpol markedly repressed the EMT process in A549 cells in response to TGF-β1. Furthermore, catalpol prevented the activation of Smad2/3 and nuclear factor κB (NF-κB) signaling pathways induced by TGF-β1 in A549 cells. In conclusion, these findings indicated that catalpol inhibits TGF-β1-induced EMT in human NSCLC cells through the inactivation of Smad2/3 and NF-κB signaling pathways. Thus, catalpol may be a promising agent for the treatment of NSCLC.  相似文献   

10.
Macular fibrosis is a vital obstacle of vision acuity improvement of age-related macular degeneration patients. This study was to investigate the effects of interleukin 2 (IL-2) on epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) synthesis and transforming growth factor β2 (TGF-β2) expression in retinal pigment epithelial (RPE) cells. 10 μg/L IL-2 was used to induce fibrosis in RPE cells for various times. Western blot was used to detect the EMT marker α-smooth muscle actin (α-SMA), ECM markers fibronectin (Fn) and type 1 collagen (COL-1), TGF-β2, and the activation of the JAK/STAT3 and NF-κB signaling pathway. Furthermore, JAK/STAT3 and NF-κB signaling pathways were specifically blocked by WP1066 or BAY11-7082, respectively, and the expression of α-SMA, COL-1, Fn and TGF-β2 protein were detected. Wound healing and Transwell assays were used to measure cell migration ability of IL-2 with or without WP1066 or BAY11-7082. After induction of IL-2, the expressions of Fn, COL-1, TGF-β2 protein were significantly increased, and this effect was correlated with IL-2 treatment duration, while α-SMA protein expression did not change significantly. Both WP1066 and BAY11-7082 could effectively downregulate the expression of Fn, COL-1 and TGF-β2 induced by IL-2. What's more, both NF-κB and JAK/STAT3 inhibitors could suppress the activation of the other signaling pathway. Additionally, JAK/STAT3 inhibitor WP1066 and NF-κB inhibitor BAY 11-7082 could obviously decrease RPE cells migration capability induced by IL-2. IL-2 promotes cell migration, ECM synthesis and TGF-β2 expression in RPE cells via JAK/STAT3 and NF-κB signaling pathways, which may play an important role in proliferative vitreoretinopathy.  相似文献   

11.
The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and also in the tumor invasion process. In addition, EMT also causes disruption of cell-cell adherence, loss of apico-basal polarity, matrix remodeling, increased motility and invasiveness in promoting tumor metastasis. The tumor microenvironment plays an important role in facilitating cancer metastasis and may induce the occurrence of EMT in tumor cells. A large number of inflammatory cells infiltrating the tumor site, as well as hypoxia existing in a large area of tumor, in addition many stem cells present in tumor microenvironment, such as cancer stem cells (CSCs), mesenchymal stem cells (MSCs), all of these may be the inducers of EMT in tumor cells. The signaling pathways involved in EMT are various, including TGF-β, NF-κB, Wnt, Notch, and others. In this review, we discuss the current knowledge about the role of the tumor microenvironment in EMT and the related signaling pathways as well as the interaction between them.  相似文献   

12.
13.
Perturbations in the adipocytokine profile, especially higher levels of leptin, are a major cause of breast tumor progression and metastasis; the underlying mechanisms, however, are not well understood. In particular, it remains elusive whether leptin is involved in epithelial-mesenchymal transition (EMT). Here, we provide molecular evidence that leptin induces breast cancer cells to undergo a transition from epithelial to spindle-like mesenchymal morphology. Investigating the downstream mediator(s) that may direct leptin-induced EMT, we found functional interactions between leptin, metastasis-associated protein 1 (MTA1), and Wnt1 signaling components. Leptin increases accumulation and nuclear translocation of β-catenin leading to increased promoter recruitment. Silencing of β-catenin or treatment with the small molecule inhibitor, ICG-001, inhibits leptin-induced EMT, invasion, and tumorsphere formation. Mechanistically, leptin stimulates phosphorylation of glycogen synthase kinase 3β (GSK3β) via Akt activation resulting in a substantial decrease in the formation of the GSK3β-LKB1-Axin complex that leads to increased accumulation of β-catenin. Leptin treatment also increases Wnt1 expression that contributes to GSK3β phosphorylation. Inhibition of Wnt1 abrogates leptin-stimulated GSK3β phosphorylation. We also discovered that leptin increases the expression of an important modifier of Wnt1 signaling, MTA1, which is integral to leptin-mediated regulation of the Wnt/β-catenin pathway as silencing of MTA1 inhibits leptin-induced Wnt1 expression, GSK3β phosphorylation, and β-catenin activation. Furthermore, analysis of leptin-treated breast tumors shows increased expression of Wnt1, pGSK3β, and vimentin along with higher nuclear accumulation of β-catenin and reduced E-cadherin expression providing in vivo evidence for a previously unrecognized cross-talk between leptin and MTA1/Wnt signaling in epithelial-mesenchymal transition of breast cancer cells.  相似文献   

14.
15.
上皮–间质转化(epithelial-mesenchymal transition,EMT)是上皮来源肿瘤细胞获得侵袭和转移能力的重要生物学过程。肿瘤干细胞样细胞(cancer stem-like cells,CSLCs)在肿瘤发生、侵袭、转移和复发中亦起着关键作用。近年发现,EMT与肿瘤干细胞样特性获得存在密切关联,二者通过TGF-β、Wnt/β-catenin、Notch、Hedgehog、FGF、PI3k/Akt等多种信号通路及通路间的信号串话而交互作用,共同影响着肿瘤发生、侵袭及转移,了解调控EMT/CSLCs关键信号分子的功能及相互作用对于肿瘤靶向治疗具有重要意义。  相似文献   

16.
ABSTRACT

Astragaloside IV (AS#IV) has previously demonstrated antitumoractivity. We investigated the effect and mechanisms of AS#IV in relation to epithelial–mesenchymal transition (EMT), viainterference with the Wnt/β-catenin signaling pathway in gliomaU251 cells. Induction of glioma U251 cells by transforming growthfactor (TGF)#β1 activated EMT, including switching E#cadherin toN-cadherin and altering the expression of Wnt/β-catenin signalingpathway components such as vimentin, β-catenin, and cyclin-D1.AS-IV inhibited the viability, invasion, and migration of TGF-β1-induced glioma U251 cells. AS-IV also interfered with the TGF#β1-induced Wnt/β-catenin signaling pathway in glioma U251 cells.These findings indicate that AS#IV prohibits TGF#β1-induced EMTby disrupting the Wnt/β-catenin pathway in glioma U251 cells. AS#IV may thus be a potential candidate agent for treating glioma andother central nervous system tumors.  相似文献   

17.
18.
B Chen  XD Li  DX Liu  H Wang  P Xie  ZY Liu  GQ Hou  B Chang  SX Du 《Phytomedicine》2012,19(11):1029-1034
Panax notoginseng saponins (PNS) are known to regulate the osteogenic differentiation of bone marrow stromal cells (BMSCs). In the present study, we investigated whether PNS could promote the osteogenic differentiation of BMSCs through modulating the Wnt/β-catenin signaling pathways, which are implicated in BMSCs osteogenesis. We found that PNS enhanced the mRNA expression of OPG, β-catenin, and cyclin D1 while decreased the mRNA expression of RANKL and PPARγ2. The actions of PNS on BMSCs were reversed (or partially) by DKK-1, a classical inhibitor of Wnt/β-catenin signaling. These results suggest that PNS stimulating bone formation by promoting the proliferation and osteogenic differentiation of BMSCs, and could also protect the skeletal system by decreasing bone resorption through reduction of RANKL/OPG expression via Wnt/β-catenin signaling pathways.  相似文献   

19.
20.
MicroRNAs (miRNAs) have been validated as critical regulators in the development of melanoma. miR-140 was abnormally downregulated in uveal melanoma samples. However, the expression level and roles of miR-140-5p remain unclear in melanoma for now. We speculate that miR-140-5p is abnormally expressed and may play an important role in melanoma. The expressions of miR-140-5p and SOX4 messenger RNA were determined by quantitative real-time polymerase chain reaction assays. Western blot assays were employed to detect the expression levels of SOX4, Ki67, MMP-2, MMP-7, p-β-catenin, c-Myc, cyclin D1, p65, and IκBα. Luciferase reporter assays were employed to elucidate the interaction between SOX4 and miR-140-5p. MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) and transwell invasion assays were applied to evaluate capabilities of cell proliferation and invasion, respectively. Xenograft models of melanoma were established to verify the role and molecular basis of miR-140-5p. Immunohistochemical (IHC) assays were employed to measure the Ki67 and SOX4 at the protein level in xenografted melanoma tissues. Herein, these observations showed that, miR-140-5p was abnormally downregulated in melanoma tissues and cells, while SOX4 was upregulated. miR-140-5p directly targeted SOX4 and inhibited its expression in melanoma cells. miR-140-5p overexpression repressed melanoma cell proliferation and invasion and its effects were partially restored SOX4 overexpression. Moreover, miR-140-5p hindered melanoma growth in vivo by downregulating SOX4. Mechanistically, miR-140-5p suppressed activation of the Wnt/β-catenin and NF-κB pathways by targeting SOX4. Our study concluded that miR-140-5p hindered cell proliferation, invasion, and tumorigenesis by targeting SOX4 via inactivation of the Wnt/β-catenin and NF-κB signaling pathways in malignant melanoma, which provides an underlying molecular mechanism for the treatment for melanoma with miRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号