首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Steroid-induced osteonecrosis of the femoral head (SIONFH) has been a common disease following corticosteroid therapy. Presently, we aim to explore the functions of circular RNA (circ) PVT1 in SIONFH rats and the underlying mechanism. Glucocorticoid (GC) was used to treat SD rats and bone marrow-derived mesenchymal stem cells (BMSCs) to construct SIONFH model in vitro and in vivo, respectively. The pathological injury of the femoral head in the SIONFH rats was detected via haematoxylin-eosin (HE) staining and immunohistochemistry (IHC). The osteogenic differentiation, proliferation and apoptosis of BMSCs were detected. Western blot was used to detect Smad7, Bax, Bcl2 and Smad2/3. The potential targets of circPVT1 and miR-21-5p were validated through luciferase reporter gene assay and RNA pull-down assay, respectively. We found that CircPVT1 was decreased in the femoral head of SIONFH rats and GC-treated BMSCs, while miR-21-5p was markedly up-regulated. Overexpressed circPVT1 attenuated the apoptosis and cell viability inhibition of BMSCs induced by GC, while miR-21-5p up-regulation had the opposite effects. What's more, the in vivo experiments confirmed that up-regulating circPVT1 repressed osteonecrosis in SIONFH rats through repressing apoptosis. Mechanistically, circPVT1 functioned as a ceRNA of miR-21-5p, which targeted at the 3'untranslated region of Smad7. CircPVT1 enhancing Smad7 and mitigating GC activated TGFβ/Smad2/3 pathway through inhibiting miR-21-5p. In conclusion, CircPVT1 exerts protective effects against SIONFH via modulating miR-21-5p-mediated Smad7/TGFβ pathway.  相似文献   

2.
3.
4.
Skeletal muscle is an important and complex organ with multiple biological functions in humans and animals. Proliferation and differentiation of myoblasts are the key steps during the development of skeletal muscle. MicroRNA (miRNA) is a class of 21-nucleotide noncoding RNAs regulating gene expression by combining with the 3′-untranslated region of target messenger RNA. Many studies in recent years have suggested that miRNAs play a critical role in myogenesis. Through high-throughput sequencing, we found that miR-323-3p showed significant changes in the longissimus dorsi muscle of Rongchang pigs in different age groups. In this study, we discovered that overexpression of miR-323-3p repressed myoblast proliferation and promoted differentiation, whereas the inhibitor of miR-323-3p displayed the opposite results. Furthermore, we predicted Smad2 as the target gene of miR-323-3p and found that miR-323-3p directly modulated the expression level of Smad2. Then luciferase reporter assays verified that Smad2 was a target gene of miR-323-3p during the differentiation of myoblasts. These findings reveal that miR-323-3p is a positive regulator of myogenesis by targeting Smad2. This provides a novel mechanism of miRNAs in myogenesis.  相似文献   

5.
6.
Human periodontal ligament stem cells (hPDLSCs) are a promising source in regenerative medicine. Due to the complexity and heterogeneity of hPDLSCs, it is critical to isolate homogeneous hPDLSCs with high regenerative potential. In this study, p75 neurotrophin receptor (p75NTR) was used to isolate p75NTR+ and p75NTR? hPDLSCs by fluorescence‐activated cell sorting. Differences in osteogenic differentiation among p75NTR+, p75NTR? and unsorted hPDLSCs were observed. Differential gene expression profiles between p75NTR+ and p75NTR? hPDLSCs were analysed by RNA sequencing. α1 Integrin (ITGA1) small interfering RNA and ITGA1‐overexpressing adenovirus were used to transfect p75NTR+ and p75NTR? hPDLSCs. The results showed that p75NTR+ hPDLSCs demonstrated superior osteogenic capacity than p75NTR? and unsorted hPDLSCs. Differentially expressed genes between p75NTR+ and p75NTR? hPDLSCs were highly involved in the extracellular matrix‐receptor interaction signalling pathway, and p75NTR+ hPDLSCs expressed higher ITGA1 levels than p75NTR? hPDLSCs. ITGA1 silencing inhibited the osteogenic differentiation of p75NTR+ hPDLSCs, while ITGA1 overexpression enhanced the osteogenic differentiation of p75NTR? hPDLSCs . These findings indicate that p75NTR optimizes the osteogenic potential of hPDLSCs by up‐regulating ITGA1 expression, suggesting that p75NTR can be used as a novel cell surface marker to identify and purify hPDLSCs to promote their applications in regenerative medicine.  相似文献   

7.
8.
9.
miRNAs, a kind of noncoding small RNA, play a significant role in adipose differentiation. In this study, we explored the effect of miR-324-5p in adipose differentiation, and found that miR-324-5p could promote adipocytes differentiation and increase body weight in mice. We overexpressed miR-324-5p during adipocytes differentiation, by oil red O and bodipy staining found that lipid accumulation was increased, and the expression level of adipogenic related genes were significantly increased. And the opposite experimental results were obtained after inhibiting miR-324-5p. In vivo, we injected miR-324-5p agomiR in obese mice and found that body weight, adipocyte area, and adipogenic-related gene expression level were significantly increased but lipolytic genes were decreased. To further explore the mechanism of miR-324-5p regulation in lipid accumulation, we constructed Krueppel-like factor 3 (KLF3) 3′-untranslated region luciferase reporter vector and KLF3 pcDNA 3.1 overexpression vector, and found that miR-324-5p was able to directly target KLF3. Overall, in this study we found that miR-324-5p could promote mice preadipoytes differentiation and increase mice fat accumulation by targeting KLF3.  相似文献   

10.
microRNAs (miRNAs) have recently been recognized as playing an important role in bone-associated diseases. This study investigated whether the reduced miR-155-5p in steroid-associated osteonecrosis of the femoral head (ONFH) attenuated osteogenic differentiation and cell proliferation by targeting GSK3B. Bone marrow was collected from the proximal femurs of patients with steroid-associated ONFH (n = 10) and patients with new femoral neck fracture (n = 10) and mesenchymal stem cells (MSCs) were isolated. The expression profile, the biological function of miR-155-5p, and the interaction between miR-155-5p and GSK3B were investigated by cell viability measurement, western blot, real-time polymerase chain reaction, luciferase reporter assay, and Alizarin Red S (ARS) staining of MSCs. The MSCs that were obtained from the femoral neck fracture group and from the steroid-associated ONFH group were transfected with or without miR-155-5p. We found that, in ONFH samples, the level of mature miR-155-5p was significantly lower than that of control samples. By inhibiting GSK3B, miR-155-5p promoted the nuclear translocation of β-catenin, increased the expression of osteogenesis-related genes, and facilitated the proliferation and differentiation of MSCs. Restoring the expression of GSK3B in MSCs partially reversed the effect of miR-155-5p. These findings suggest that reduced miR-155-5p in steroid-associated ONFH attenuates osteogenic differentiation and cell proliferation by increased levels of GSK3B and inhibition of Wnt signaling.  相似文献   

11.
Weng  Wei  Di  Shengdi  Xing  Shitong  Sun  Zhengguo  Shen  Zheyuan  Dou  Xiaojie  He  Shouyu  Tang  Huibin  Min  Jikang 《Molecular and cellular biochemistry》2021,476(6):2503-2512

The balance of osteoblasts and marrow adipocytes from bone marrow mesenchymal stem cells (BM-MSCs) maintains bone health. Under aging or other pathological stimuli, BM-MSCs will preferentially differentiate into marrow adipocytes and reduce osteoblasts, leading to osteoporosis. Long non-coding RNA differentiation antagonizing non-protein coding RNA (DANCR) participates in the osteogenic differentiation of human BM-MSCs, but the mechanism by which DANCR regulates the osteogenic differentiation of human BM-MSCs has not been fully explained. We observed that DANCR and prospero homeobox 1 (PROX1) were downregulated during osteogenic differentiation of human BM-MSCs, while miR-1301-3p had an opposite trend. DANCR overexpression decreased the levels of alkaline phosphatase, RUNX2, osteocalcin, Osterix in BM-MSCs after osteogenic induction, but DANCR silencing had the opposite result. Moreover, DANCR sponged miR-1301-3p to regulate PROX1 expression. miR-1301-3p overexpression reversed the suppressive role of DANCR elevation on the osteogenic differentiation of human BM-MSCs. Also, PROX1 elevation abolished the promoting role of miR-1301-3p overexpression on the osteogenic differentiation of human BM-MSCs. In conclusion, DANCR suppressed the osteogenic differentiation of human BM-MSCs through the miR-1301-3p/PROX1 axis, offering a novel mechanism by which DANCR is responsible for the osteogenic differentiation of human BM-MSCs.

  相似文献   

12.
Krüppel-like factor 5 (KLF5) takes part in the pathologic processes of many types of cancer; however, its expression and roles in the biological behavior of gastric cancer remain unknown. TargetScan suggested that miR-145-5p is the predicted effective and conserved microRNA (miRNA) that binds to KLF5 through its 3′-untranslated region (UTR). We investigated the expression of KLF5 and miR-145-5p messenger RNA (mRNA) in gastric cancer and then analyzed its role in the biological behavior of gastric cancer cells. Our results indicated that KLF5 expression was detected by immunohistochemistry in 39.7% of the gastric cancer cases and was increased compared with that of the corresponding noncancerous normal mucosa (0.01 < p < 0.05). The poorly differentiated subtype showed positive KLF5 expression, whereas the differentiated subtype showed negative KLF5 expression (p < 0.05). Dual-luciferase reporter assay suggested KLF5 3′-UTR was the direct target of miR-145-5p. Compared with the differentiated gastric cancer, miR-145-5p was downregulated in undifferentiated gastric cancer (p < 0.05). The downregulation of KLF5 expression and differentiation of MGC-803 and BGC-823 caused by siKLF5 or miR-145-5p mimic transfection. Our results indicated that miR-145-5p/KLF5 3′-UTR affected the differentiation of gastric cancer. miR-145-5p was able to promote gastric cancer differentiation by targeting KLF5 3′-UTR directly. Our data suggest a novel mechanism for cancer differentiation and a new facet to the role of miR-145-5p/KLF5 in gastric cancer.  相似文献   

13.
Emerging evidence suggests that microRNAs (miRNAs) may be pathologically involved in osteoarthritis (OA). Subchondral bone (SCB) sclerosis is accounted for the knee osteoarthritis (KOA) development and progression. In this study, we aimed to screen the miRNA biomarkers of KOA and investigated whether these miRNAs regulate the differentiation potential of mesenchymal stem cells (MSCs) and thus contributing to SCB. We identified 48 miRNAs in the blood samples in KOA patients (n = 5) through microarray expression profiling detection. After validation with larger sample number, we confirmed hsa-miR-582-5p and hsa-miR-424-5p were associated with the pathology of SCB sclerosis. Target genes prediction and pathway analysis were implemented with online databases, indicating these two candidate miRNAs were closely related to the pathways of pluripotency of stem cells and pathology of OA. Surprisingly, mmu-miR-582-5p (homology of hsa-miR-582-5p) was downregulated in osteogenic differentiation and upregulated in adipogenic differentiation of mesenchymal progenitor C3H10T1/2 cells, whereas mmu-mir-322-5p (homology of hsa-miR-424-5p) showed no change through the in vitro study. Supplementing mmu-miR-582-5p mimics blocked osteogenic and induced adipogenic differentiation of C3H10T1/2 cells, whereas silencing of the endogenous mmu-miR-582-5p enhanced osteogenic and repressed adipogenic differentiation. Further mechanism studies showed that mmu-miR-582-5p was directly targeted to Runx2. Mutation of putative mmu-miR-582-5p binding sites in Runx2 3′ untranslated region (3′UTR) could abolish the response of the 3′UTR-luciferase construct to mmu-miR-582-5p supplementation. Generally speaking, our data suggest that miR-582-5p is an important biomarker of KOA and is able to regulate osteogenic and adipogenic differentiation of MSCs via targeting Runx2. The study also suggests that miR-582-5p may play a crucial role in SCB sclerosis of human KOA.  相似文献   

14.
miRNAs are endogenously expressed 18- to 25-nucleotide RNAs that regulate gene expression through translational repression by binding to a target mRNA. Recently, it has been indicated that miRNAs are closely related to osteogenesis. Our previous data suggested that miR-30 family members might be important regulators during the biomineralization process. However, whether and how they modulate osteogenic differentiation have not been explored. In this study, we demonstrated that miR-30 family members negatively regulate BMP-2-induced osteoblast differentiation by targeting Smad1 and Runx2. Evidentially, overexpression of miR-30 family members led to a decrease of alkaline phosphatase activity, whereas knockdown of them increased the activity. Then bioinformatic analysis identified potential target sites of the miR-30 family located in the 3' untranslated regions of Smad1 and Runx2. Western blot analysis and quantitative RT-PCR assays demonstrated that miR-30 family members inhibit Smad1 gene expression on the basis of repressing its translation. Furthermore, dual-luciferase reporter assays confirmed that Smad1 is a direct target of miR-30 family members. Rescue experiments that overexpress Smad1 and Runx2 significantly eliminated the inhibitory effect of miR-30 on osteogenic differentiation and provided strong evidence that miR-30 mediates the inhibition of osteogenesis by targeting Smad1 and Runx2. Also, the inhibitory effects of the miR-30 family were validated in mouse bone marrow mesenchymal stem cells. Therefore, our study uncovered that miR-30 family members are key negative regulators of BMP-2-mediated osteogenic differentiation.  相似文献   

15.
Forkhead box O1 (FOXO1) is a key regulator of osteogenesis. The aim of this study was to identify the mechanisms of microRNAs (miRNAs) targeting FOXO1 in osteogenic differentiation of human bone marrow mesenchymal stem cells (hMSCs). Three miRNA target prediction programs were used to search for potential miRNAs that target FOXO1. Quantitative real-time polymerase chain reaction was conducted to detect the expression of miR-1271-5p and FOXO1 during osteogenic differentiation. Target gene prediction and screening, luciferase reporter assay was used to verify the downstream target gene of miR-1271-5p. The expression levels of FOXO1 and Runx2 were detected by RT-qPCR and Western blot analysis. Alkaline phosphatase (ALP) activity and matrix mineralization were detected by biochemical methods. The expression levels of Runx2, ALP, and osteocalcin were detected by RT-qPCR. Our results showed that miR-1271-5p was downregulated during osteogenic induction. And the expression levels of miR-1271-5p were higher in osteoporotic tissues than that in adjacent nonosteoporotic tissues. The expression levels of FOXO1 were lower in osteoporotic tissues than that in adjacent nonosteoporotic tissues. And a negative correlation was found between miR-1271-5p and FOXO1 in osteoporotic tissues. Overexpression of miR-1271-5p downregulated FOXO1 and inhibited osteogenic differentiation in hMSCs. Overexpression of miR-1271-5p downregulated the expression of osteogenic markers and reduced ALP activity. In addition, ectopic expression of FOXO1 reversed the effect of miR-1271-5p on osteogenic differentiation. In conclusion, miR-1271-5p functioned as a therapeutic target of osteogenic differentiation in hMSCs by inhibiting FOXO1, which provides valuable insights into the use of miR-1271-5p as a target in the treatment of osteoporosis and other bone metabolic diseases.  相似文献   

16.
17.
18.
19.
Human mesenchymal stem cells (hMSCs) have self-renewal and differentiation capabilities but the regulatory mechanisms of MSC fate determination remain poorly understood. Here, we aimed to identify microRNAs enriched in hMSCs that modulate differentiation commitments. Microarray analysis revealed that miR-140-5p is commonly enriched in undifferentiated hMSCs from various tissue sources. Moreover, bioinformatic analysis and luciferase reporter assay validated that miR-140-5p directly represses bone morphogenic protein 2 (BMP2). Furthermore, blocking miR-140-5p in hMSCs increased the expression of BMP signaling components and critical regulators of osteogenic differentiation. We propose that miR-140-5p functionally inhibits osteogenic lineage commitment in undifferentiated hMSCs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号