首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
2.
Cellular therapeutic neovascularization has been successfully performed in clinical trials for patients with ischaemia diseases. Despite the vast knowledge of cardiovascular disease and circadian biology, the role of the circadian clock in regulating angiogenesis in myocardial infarction (MI) remains poorly understood. In this study, we aimed to investigate the role and underlying mechanisms of Period 2 (Per2) in endothelial progenitor cell (EPC) function. Flow cytometry revealed lower circulating EPC proportion in per2−/− than in wild-type (WT) mice. PER2 was abundantly expressed in early EPCs in mice. In vitro, EPCs from per2−/− mice showed impaired proliferation, migration, tube formation and adhesion. Western blot analysis demonstrated inhibited PI3k/Akt/FoxO signalling and reduced C-X-C chemokine receptor type 4 (CXCR4) protein level in EPCs of per2−/− mice. The impaired proliferation was blocked by activated PI3K/Akt/FoxO signalling. Direct interaction of CXCR4 and PER2 was detected in WT EPCs. To further study the effect of per2 on in vivo EPC survival and angiogenesis, we injected saline or DiI-labelled WT or per2−/− EPC intramyocardially into mice with induced MI. Per2−/− reduced the retention of transplanted EPCs in the myocardium, which was associated with significantly reduced DiI expression in the myocardium of MI mice. Decreased angiogenesis in the myocardium of per2−/− EPC-treated mice coincided with decreased LV function and increased infarct size in the myocardium. Per2 may be a key factor in maintaining EPC function in vitro and in therapeutic angiogenesis in vivo.  相似文献   

3.
4.
5.
Signaling via the type 1 insulin-like growth factor receptor (IGF1R) confers resistance to EGF receptor (EGFR) inhibitors. It is plausible that reciprocal EGFR compensation could mediate resistance to IGF1R inhibition, prompting us to investigate effects of IGF1R depletion on EGFR signaling in breast cancer cells expressing relatively high (MDA-MB-468) or low (MCF7) EGFR. Transient IGF1R knockdown induced enhanced phosphorylation of the EGFR and its effectors JNK, ERKs and STAT5, but this did not prevent apoptosis induction and inhibition of clonogenic survival following IGF1R knockdown. We used IGF1R shRNA to induce chronic IGF1R depletion, and achieved stable gene silencing in MCF-7 cells; here, EGFR overexpression led to EGFR hyperphosphorylation, again without abrogating survival inhibition after IGF1R knockdown. In both cell lines, dual receptor knockdown prevented EGFR hyperphosphorylation, but induced no greater inhibition of clonogenic survival than IGF1R knockdown alone. These results suggest that the EGFR cannot compensate for IGF1R depletion, and are encouraging for the strategy of IGF1R targeting.  相似文献   

6.
7.
Cord blood and peripheral-adult blood were compared as different sources of early endothelial precursor cells (eEPCs). Total mononuclear cells (MNCs) were obtained from both blood types and committed to eEPCs by exposure to fibronectin, VEGF, IGF-I, and bFGF. Under this condition, MNCs seeded at the density of 3 x 10(5) cells/cm(2) assumed a spindle shape, which was indicative of developing eEPCs, and expanded in a similar manner irrespective to the blood sources. Ulex europaeus agglutinin (UEA-1) and acetylated low density lipoprotein (acLDL) double staining was present in 90% in both peripheral- and cord-blood eEPCs after 2-week expansion. Also, the ability of eEPCs to form tubule-like structures in Matrigel was independent of their blood source, but dependent on the presence of human umbilical vein endothelial cells (HUVECs). eNOS and nNOS were not detectable by Western blotting in both peripheral and cord-blood eEPCs upon 3 weeks and their mRNA levels were lower than 2% relative to those present in HUVECs. On the contrary, iNOS protein was detectable in peripheral-blood eEPCs, but not in cord-blood eEPCs and HUVECs, as well as iNOS mRNA was more concentrated in peripheral-blood eEPCs than in cord-blood eEPCs and HUVECs. These data suggest that: (a) peripheral and cord blood can be considered comparable sources of eEPCs when they are expanded and differentiated in a short-term period; (b) the extremely low expression of constitutive NOS isoforms in the eEPCs of both blood types should markedly reduce their ability to regulate NO-dependent vasorelaxation; (c) the presence of iNOS in peripheral-blood eEPCs could improve the process of vasculogenesis.  相似文献   

8.
Exosomes extracted from mesenchymal stem cells (MSCs) was reported to reduce myocardial ischemia/reperfusion damage. Besides, stromal-derived factor 1 (SDF1a) functions as cardiac repair after myocardial infarction (MI). Therefore, the present study aims to identify whether exosomes (Exo) released from SDF1-overexpressing MSCs display a beneficial effect on ischemic myocardial infarction. Initially, a gain-of-function study was performed to investigate the function of SDF1 in ischemic myocardial cells and cardiac endothelial cells. Coculture experiments were performed to measure potential exosomic transfer of SDF1 from MSCs to ischemic myocardial cells and cardiac endothelial cells. During the coculture experiments, exosome secretion was disrupted by neutral sphingomyelinase inhibitor GW4869 and upregulated exosomal SDF1 using SDF1 plasmid. Effects of Exo-SDF1 on cardiac function in MI mice were investigated in vivo. MSCs suppressed myocardial cell apoptosis and promoted microvascular regeneration of endothelial cells through secretion of exosomes. The addition of GW4869 led to increased apoptotic capacity of myocardial cells, decreased microvascular formation ability of endothelial cells, enhanced autophagy ability, and elevated Beclin-1 level as well as ratio of LC3II/LC3I. Overexpression of SDF1 and Exo-SDF1 inhibited apoptosis and autophagy of myocardial cells, but promoted tube formation of endothelial cells. The interference of PI3K signaling pathway promoted apoptosis and autophagy of myocardial cells, but inhibited tube formation of endothelial cells. SDF1 activated the PI3K signaling pathway. Exo-SDF1 protected cardiac function of MI mice and inhibited myocardial tissue damage. This study provided evidence that SDF1 overexpression in MSCs-derived exosomes inhibited autophagy of ischemic myocardial cells and promoted microvascular production of endothelial cells.  相似文献   

9.
High‐mobility group box 1 (HMGB1) was initially described as a damage‐associated‐molecular‐pattern (DAMP) mediator that worsens acute brain injury after stroke. But, recent findings suggest that HMGB1 can play a surprisingly beneficial role during stroke recovery by promoting endothelial progenitor cell (EPC) function and vascular remodeling in cortical gray matter. Here, we ask whether HMGB1 may also influence EPC responses in white matter injury. The standard lysophosphatidylcholine (LPC) injection model was used to induce focal demyelination in the corpus callosum of mice. Immunostaining showed that within the focal white matter lesions, HMGB1 was up‐regulated in GFAP‐positive reactive astrocytes, along with the accumulation of Flk1/CD34‐double‐positive EPCs that expressed pro‐recovery mediators such as brain‐derived neurotrophic factor and basic fibroblast growth factor. Astrocyte–EPC signaling required the HMGB1 receptor RAGE as treatment with RAGE‐neutralizing antibody significantly decreased EPC accumulation. Moreover, suppression of HMGB1 with siRNA in vivo significantly decreased EPC numbers in damaged white matter as well as proliferated endothelial cell numbers. Finally, in vitro cell culture systems confirmed that HMGB1 directly affected EPC function such as migration and tube formation. Taken together, our findings suggest that HMGB1 from reactive astrocytes may attract EPCs to promote recovery after white matter injury.  相似文献   

10.
Macrophage migration inhibitory factor (MIF) is a pleiotropic inflammatory cytokine that was recently identified as a non‐cognate ligand of the CXC‐family chemokine receptors 2 and 4 (CXCR2 and CXCR4). MIF is expressed and secreted from endothelial cells (ECs) following atherogenic stimulation, exhibits chemokine‐like properties and promotes the recruitment of leucocytes to atherogenic endothelium. CXCR4 expressed on endothelial progenitor cells (EPCs) and EC‐derived CXCL12, the cognate ligand of CXCR4, have been demonstrated to be critical when EPCs are recruited to ischemic tissues. Here we studied whether hypoxic stimulation triggers MIF secretion from ECs and whether the MIF/CXCR4 axis contributes to EPC recruitment. Exposure of human umbilical vein endothelial cells (HUVECs) and human aortic endothelial cells (HAoECs) to 1% hypoxia led to the specific release of substantial amounts of MIF. Hypoxia‐induced MIF release followed a biphasic behaviour. MIF secretion in the first phase peaked at 60 min. and was inhibited by glyburide, indicating that this MIF pool was secreted by a non‐classical mechanism and originated from pre‐formed MIF stores. Early hypoxia‐triggered MIF secretion was not inhibited by cycloheximide and echinomycin, inhibitors of general and hypoxia‐inducible factor (HIF)‐1α‐induced protein synthesis, respectively. A second phase of MIF secretion peaked around 8 hrs and was likely due to HIF‐1α‐induced de novo synthesis of MIF. To functionally investigate the role of hypoxia‐inducible secreted MIF on the recruitment of EPCs, we subjected human AcLDL+ KDR+ CD31+ EPCs to a chemotactic MIF gradient. MIF potently promoted EPC chemotaxis in a dose‐dependent bell‐shaped manner (peak: 10 ng/ml MIF). Importantly, EPC migration was induced by supernatants of hypoxia‐conditioned HUVECs, an effect that was completely abrogated by anti‐MIF‐ or anti‐CXCR4‐antibodies. Thus, hypoxia‐induced MIF secretion from ECs might play an important role in the recruitment and migration of EPCs to hypoxic tissues such as after ischemia‐induced myocardial damage.  相似文献   

11.
目的:观察大鼠急性心肌梗死后不同时间心肌钙敏感受体(CaSR)的表达和心肌细胞凋亡的变化情况。方法:健康Wistar大鼠随机分为假手术组(Sham)和心肌梗死(AMI)组,通过结扎左侧冠状动脉前降支的方法,建立大鼠心肌梗死模型,分别在手术后1、2、4周(每组成功存活n=5)检测心脏形态学和血流动力学的改变,检测心肌组织中CaSRmRNA和蛋白的表达,以及Bax、Bcl-2、caspase-3和caspase-9蛋白的表达,检测血清中乳酸脱氢酶(LDH)、肌酸激酶(CK)活性和肌钙蛋白(cTnT)水平,观察心肌细胞凋亡情况。结果:和Sham组相比,随着心肌梗死的发展,AMI组大鼠心肌组织CaSR的mRNA和蛋白的表达、细胞凋亡指数均明显增加(P<0.05),心肌细胞超微结构损伤严重;左心室收缩压(LVSP)、左心室内压最大上升速率(+dp/dtmax)(mmHg/s)和最大下降速率(-dp/dtmax)(mmHg/s)减少,左心室舒张末期压(LVEDP)明显增大(P<0.05);AMI组血清cTnT水平、CK和LDH活性均升高(P<0.05),随着心肌梗死的发展,cTnT水平和CK活性逐渐降低,LDH变化不明显。心肌组织中促凋亡相关蛋白Bax、caspase-3、caspase-9表达增多,抑制凋亡的相关蛋白(或因子)Bcl-2表达减少(P<0.05)。结论:随着AMI的发展,AMI组大鼠心肌组织中CaSR的mRNA和蛋白的表达增多,细胞凋亡数增加,表明CaSR参与了心肌梗死的发展,其机制可能与促进细胞凋亡有关。  相似文献   

12.
Myocardial infarction (MI) is a common cardiovascular disease with high morbidity and mortality. In this study, we explored the role of interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) in MI. MI was induced by ligation of the left anterior descending coronary artery. Lentivirus-mediated RNA interference of IFIT3 expression was performed by tail vein injection 72 h before MI modeling. Cardiac injury indexes and inflammatory response were examined 3 days after MI. Cardiac function indexes, infarct size, and cardiac fibrosis were assessed 4 weeks after MI. IFIT3 expression was upregulated in myocardial tissues at both 3 days and 4 weeks after MI. Knockdown of IFIT3 significantly relieved the myocardial injury, as evidenced by the decrease in serum levels of cTnI and CK-MB. In addition, IFIT3 knockdown significantly reduced the number of CD68+ macrophages and the levels of interleukin-1β, interleukin-6, and tumor necrosis factor-α, indicating that the inflammatory response was relieved. Moreover, IFIT3 silencing also significantly improved cardiac function and reduced infarct size, myocardial fibrosis, and collagen content in mice with MI. Mechanically, the present study showed that the activation of the mitogen-activated protein kinase (MAPK) pathway was observed in myocardial tissues of MI mice, which was blocked by IFIT3 knockdown, as indicated by the decreased phosphorylation of JNK, p-38, and ERK. Collectively, our results revealed the role of IFIT3 in the inflammatory response and myocardial fibrosis after MI, indicating that IFIT3 might be a potential target for MI treatment.  相似文献   

13.
The proepicardial-derived epicardium covers the myocardium and after a process of epithelial–mesenchymal transition (EMT) forms epicardium-derived cells (EPDCs). These cells migrate into the myocardium and show an essential role in the induction of the ventricular compact myocardium and the differentiation of the Purkinje fibres. EPDCs are furthermore the source of the interstitial fibroblast, the coronary smooth muscle cell and the adventitial fibroblast. The possible differentiation into cardiomyocytes, endothelial cells and the recently described telocyte and other cells in the cardiac stem cell niche needs further investigation. Surgically or genetically disturbed epicardial and EPDC differentiation leads to a spectrum of abnormalities varying from thin undifferentiated myocardium, which can be embryonic lethal, to a diminished coronary vascular bed with even absent main coronary arteries. The embryonic potential of EPDCs has been translated to both structural and functional congenital malformations and adult cardiac disease, like development of Ebstein’s malformation, arrhythmia and cardiomyopathies. Furthermore, the use of adult EPDCs as a stem cell source has been explored, showing in an animal model of myocardial ischemia the recapitulation of the embryonic program with improved function, angiogenesis and less adverse remodeling. Combining EPDCs and adult cardiomyocyte progenitor cells synergistically improved these results. The contribution of injected EPDCs was instructive rather than constructive. The finding of reactivation of the endogenous epicardium in ischemia with re-expression of developmental genes and renewed EMT marks the onset of a novel therapeutic focus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号